Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution

Xibin Song, Yuchao Dai, Dingfu Zhou, Liu Liu, Wei Li, Hongdong Li, Ruigang Yang

科研成果: 期刊稿件会议文章同行评审

81 引用 (Scopus)

摘要

Despite the remarkable progresses made in deep learning based depth map super-resolution (DSR), how to tackle real-world degradation in low-resolution (LR) depth maps remains a major challenge. Existing DSR model is generally trained and tested on synthetic dataset, which is very different from what would get from a real depth sensor. In this paper, we argue that DSR models trained under this setting are restrictive and not effective in dealing with realworld DSR tasks. We make two contributions in tackling real-world degradation of different depth sensors. First, we propose to classify the generation of LR depth maps into two types: non-linear downsampling with noise and interval downsampling, for which DSR models are learned correspondingly. Second, we propose a new framework for real-world DSR, which consists of four modules : 1) An iterative residual learning module with deep supervision to learn effective high-frequency components of depth maps in a coarse-to-fine manner; 2) A channel attention strategy to enhance channels with abundant high-frequency components; 3) A multi-stage fusion module to effectively reexploit the results in the coarse-to-fine process; and 4) A depth refinement module to improve the depth map by TGV regularization and input loss. Extensive experiments on benchmarking datasets demonstrate the superiority of our method over current state-of-the-art DSR methods.

源语言英语
文章编号9156284
页(从-至)5630-5639
页数10
期刊Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOI
出版状态已出版 - 2020
活动2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, 美国
期限: 14 6月 202019 6月 2020

指纹

探究 'Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution' 的科研主题。它们共同构成独一无二的指纹。

引用此