TY - GEN
T1 - Catalytic chemical vapor infiltration of carbon nanofilament network reinforced carbon/carbon composites
T2 - 64th International Astronautical Congress 2013, IAC 2013
AU - Deng, Hailiang
AU - Zhang, Xiaohu
AU - Li, Kezhi
AU - Zheng, Jinhuang
AU - Yin, Zhongyi
PY - 2013
Y1 - 2013
N2 - Carbon nanofilament (CFC) network reinforced carbon/carbon composites with the average density 1.72-1.75 g/cm3 were successfully produced by floating-catalytic film boiling chemical vapor infiltration from xylene pyrolysis at 1000 to 1100 °C. The catalytic effects of ferrocene content on the densification behavior were investigated such as the relative mass gain, the deposition rate, and the profiles of density and pyrocarbon (PyC) layer thickness. The microstructure of PyC matrix and CFC was observed using polarized light microscopy, scanning electron microscopy, and transmission electron microscopy. Results showed that, under the special floating catalyst method, the initial deposition rate of PyC firstly increased to a higher value at 0.8 wt% catalyst and then decreased as the catalyst content further increased to 2.0 wt%. The final density of the composites tended to decrease along both the axial and negatively radial directions resulted from the enhanced difficulty of mass transfer at the latter densification. A single layer of rough laminar (RL) PyC matrix was formed through heterogeneous nucleation and growth for the deposition at 0-0.8 wt% catalysts. But a hybrid matrix composed of isotropic (ISO) and RL PyCs was produced at 1.2 wt% catalyst, and the thickness of ISO layer increased at the higher catalyst content of 2.0 wt%. The reason for ISO PyC formation was mainly attributed to the deposition of iron encapsulated carbons and the possible homogeneous nucleation. A reinforced network consisted of numerous CFCs and vapor growth carbon fiber (VGCF) was formed probably through tip-growth mechanism. The direct deposition of PyC on CFC was the formation reason of VGCF. A transition of the CFC was generated from nanotube to nanofiber when the catalyst content increased to 0.5 wt% because of the enhanced diffusion rate of carbon atoms through and over the iron particles. The composites with a high density of 1.75 g/cm3 and uniform RL PyC matrix are rapidly produced at the catalyst content about 0.5 wt% resulting from the modified deposition front exhibiting a small thickness and large concave radius.
AB - Carbon nanofilament (CFC) network reinforced carbon/carbon composites with the average density 1.72-1.75 g/cm3 were successfully produced by floating-catalytic film boiling chemical vapor infiltration from xylene pyrolysis at 1000 to 1100 °C. The catalytic effects of ferrocene content on the densification behavior were investigated such as the relative mass gain, the deposition rate, and the profiles of density and pyrocarbon (PyC) layer thickness. The microstructure of PyC matrix and CFC was observed using polarized light microscopy, scanning electron microscopy, and transmission electron microscopy. Results showed that, under the special floating catalyst method, the initial deposition rate of PyC firstly increased to a higher value at 0.8 wt% catalyst and then decreased as the catalyst content further increased to 2.0 wt%. The final density of the composites tended to decrease along both the axial and negatively radial directions resulted from the enhanced difficulty of mass transfer at the latter densification. A single layer of rough laminar (RL) PyC matrix was formed through heterogeneous nucleation and growth for the deposition at 0-0.8 wt% catalysts. But a hybrid matrix composed of isotropic (ISO) and RL PyCs was produced at 1.2 wt% catalyst, and the thickness of ISO layer increased at the higher catalyst content of 2.0 wt%. The reason for ISO PyC formation was mainly attributed to the deposition of iron encapsulated carbons and the possible homogeneous nucleation. A reinforced network consisted of numerous CFCs and vapor growth carbon fiber (VGCF) was formed probably through tip-growth mechanism. The direct deposition of PyC on CFC was the formation reason of VGCF. A transition of the CFC was generated from nanotube to nanofiber when the catalyst content increased to 0.5 wt% because of the enhanced diffusion rate of carbon atoms through and over the iron particles. The composites with a high density of 1.75 g/cm3 and uniform RL PyC matrix are rapidly produced at the catalyst content about 0.5 wt% resulting from the modified deposition front exhibiting a small thickness and large concave radius.
KW - Carbon nanofilament
KW - Carbon/carbon composites
KW - Catalytic chemical vapor infiltration
KW - Densification behavior
KW - Matrix microstructure
UR - http://www.scopus.com/inward/record.url?scp=84904618042&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:84904618042
SN - 9781629939094
T3 - Proceedings of the International Astronautical Congress, IAC
SP - 5865
EP - 5896
BT - 64th International Astronautical Congress 2013, IAC 2013
PB - International Astronautical Federation, IAF
Y2 - 23 September 2013 through 27 September 2013
ER -