摘要
In this paper, we propose to boost the cross-modal retrieval through mutually aligning images and captions on the aspects of both features and relationships. First, we propose a multi-feature based visual-semantic embedding (MVSE++) space to retrieve the candidates in another modality, which provides a more comprehensive representation of the visual content of objects and scene context in images. Thus, we have more potential to find a more accurate and detailed caption for the image. However, captioning concentrates the image contents by semantic description. The cross-modal neighboring relationships start from the visual and semantic sides are asymmetric. To retrieve a better cross-modal neighbor, we propose to re-rank the initially retrieved candidates according to the {k} nearest reciprocal neighbors in MVSE++ space. The method is evaluated on the benchmark datasets of MSCOCO and Flickr30K with standard metrics. We achieve highe accuracy in caption retrieval and image retrieval at both R@1 and R@10.
源语言 | 英语 |
---|---|
文章编号 | 9085386 |
页(从-至) | 84642-84651 |
页数 | 10 |
期刊 | IEEE Access |
卷 | 8 |
DOI | |
出版状态 | 已出版 - 2020 |