AWFA-LPD: Adaptive weight feature aggregation for multi-frame license plate detection

Xiaocheng Lu, Yuan Yuan, Qi Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

For license plate detection (LPD), most of the existing work is based on images as input. If these algorithms can be applied to multiple frames or videos, they can be adapted to more complex unconstrained scenes. In this paper, we propose a LPD framework for detecting license plates in multiple frames or videos, called AWFA-LPD, which effectively integrates the features of nearby frames. Compared with image based detection models, our network integrates optical flow extraction module, which can propagate the features of local frames and fuse with the reference frame. Moreover, we concatenate a non-link suppression module after the detection results to post-process the bounding boxes. Extensive experiments demonstrate the effectiveness and efficiency of our framework.

源语言英语
主期刊名ICMR 2021 - Proceedings of the 2021 International Conference on Multimedia Retrieval
出版商Association for Computing Machinery, Inc
476-480
页数5
ISBN(电子版)9781450384636
DOI
出版状态已出版 - 24 8月 2021
活动11th ACM International Conference on Multimedia Retrieval, ICMR 2021 - Taipei, 中国台湾
期限: 16 11月 202119 11月 2021

出版系列

姓名ICMR 2021 - Proceedings of the 2021 International Conference on Multimedia Retrieval

会议

会议11th ACM International Conference on Multimedia Retrieval, ICMR 2021
国家/地区中国台湾
Taipei
时期16/11/2119/11/21

指纹

探究 'AWFA-LPD: Adaptive weight feature aggregation for multi-frame license plate detection' 的科研主题。它们共同构成独一无二的指纹。

引用此