Automatic kernel size determination for deep neural networks based hyperspectral image classification

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

Considering kernels in Convolutional Neural Networks (CNNs) as detectors for local patterns, K-means neural network proposes to cluster local patches extracted from training images and then fixate those kernels as the representative patches in each cluster without further training. Thus the amount of labeled samples necessitated for training can be greatly reduced. One key property of those kernels is their spatial size which determines their capacity in detecting local patterns and is expected to be task-specific. However, most of literatures determine the spatial size of those kernels in a heuristic way. To address this problem, we propose to automatically determine the kernel size in order to better adapt the K-means neural network for hyperspectral imagery classification. Specifically, a novel kernel-size determination scheme is developed by measuring the clustering performance of local patches with different sizes. With the kernel of determined size, more discriminative local patterns can be detected in the hyperspectral imagery, with which the classification performance of K-means neural network can be obviously improved. Experimental results on two datasets demonstrate the effectiveness of the proposed method.

源语言英语
文章编号415
期刊Remote Sensing
10
3
DOI
出版状态已出版 - 1 3月 2018

指纹

探究 'Automatic kernel size determination for deep neural networks based hyperspectral image classification' 的科研主题。它们共同构成独一无二的指纹。

引用此