An Improved Hybrid Grey Wolf Optimizer for Multi-Agent Trajectory Planning in Complex Environment

Yutong Zhu, Ye Zhang, Jingyu Wang, Ke Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper considers the problem that Grey Wolf Optimizer (GWO) has some defects in solving trajectory optimization problems. To solve this problem, this paper proposes the improved GWO algorithm based on GWO by the idea of linear differential decrement and dynamic exponential weighted average. Compared with other algorithms, this algorithm has more flexibility in position updating and finds the global optimal solution effectively. Finally, simulation results demonstrate the superiority of the improved GWO algorithm in terms of search accuracy and running time.

源语言英语
主期刊名Proceedings - 2023 China Automation Congress, CAC 2023
出版商Institute of Electrical and Electronics Engineers Inc.
8631-8636
页数6
ISBN(电子版)9798350303759
DOI
出版状态已出版 - 2023
活动2023 China Automation Congress, CAC 2023 - Chongqing, 中国
期限: 17 11月 202319 11月 2023

出版系列

姓名Proceedings - 2023 China Automation Congress, CAC 2023

会议

会议2023 China Automation Congress, CAC 2023
国家/地区中国
Chongqing
时期17/11/2319/11/23

指纹

探究 'An Improved Hybrid Grey Wolf Optimizer for Multi-Agent Trajectory Planning in Complex Environment' 的科研主题。它们共同构成独一无二的指纹。

引用此