Aerodynamic and Aeroelastic Analysis of Flying Wing with Split Drag-Rudder

Wei Xu, Min Xu, Xiaomin An

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

In this paper, aerodynamic and aeroelastic characteristics of flying wing with split drag-rudder are studied, using aeroelastic analysis method in time domain based on CFD/CSD (Computational Fluid Dynamics, CFD; Computational Structural Dynamics, CSD) coupling. Unsteady aerodynamic is obtained by solving Euler equations, and structural response is calculated by solving structural dynamic equations. CFD/CSD coupling uses predictive-multiple step loose coupling method, coupling interface data exchange uses constant volume transformation (CVT) method, and dynamic grid deforming uses transfinite interpolate (TFI) method. The flutter boundary of AGARD 445.6 wing is calculated with the coupled CFD/CSD method. Comparison between present results and experimental data is given, and there are good agreements in subsonic and transonic region, respectively, which illustrate the reliability of this method. Then, for the flying wing, the aerodynamic and aeroelastic characteristics are studied and revealed. Lift and drag coefficients with various cracking angles and angles of attack are calculated, and some change laws are concluded. Finally, flutter boundary of the flying wing is computed, and lift and drag coefficients in rigid and elastic conditions are given, after which several laws are summarized.

源语言英语
主期刊名The Proceedings of the Asia-Pacific International Symposium on Aerospace Technology, APISAT 2018
编辑Xinguo Zhang
出版商Springer Verlag
294-309
页数16
ISBN(印刷版)9789811333040
DOI
出版状态已出版 - 2019
活动Asia-Pacific International Symposium on Aerospace Technology, APISAT 2018 - Chengdu, 中国
期限: 16 10月 201818 10月 2018

出版系列

姓名Lecture Notes in Electrical Engineering
459
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议Asia-Pacific International Symposium on Aerospace Technology, APISAT 2018
国家/地区中国
Chengdu
时期16/10/1818/10/18

指纹

探究 'Aerodynamic and Aeroelastic Analysis of Flying Wing with Split Drag-Rudder' 的科研主题。它们共同构成独一无二的指纹。

引用此