Advances in attention mechanisms for medical image segmentation

Jianpeng Zhang, Xiaomin Chen, Bing Yang, Qingbiao Guan, Qi Chen, Jian Chen, Qi Wu, Yutong Xie, Yong Xia

科研成果: 期刊稿件文献综述同行评审

1 引用 (Scopus)

摘要

Medical image segmentation plays an important role in computer-aided diagnosis. Attention mechanisms that distinguish important parts from irrelevant parts have been widely used in medical image segmentation tasks. This paper systematically reviews the basic principles of attention mechanisms and their applications in medical image segmentation. First, we review the basic concepts of attention mechanism and formulation. Second, we surveyed about 200 articles related to medical image segmentation, and divided them into three groups based on their attention mechanisms, Pre-Transformer attention, Transformer attention and Mamba-related attention. In each group, we deeply analyze the attention mechanisms from three aspects based on the current literature work, i.e., the principle of the mechanism (what to use), implementation methods (how to use), and application tasks (where to use). We also thoroughly analyzed the advantages and limitations of their applications to different tasks. Finally, we summarize the current state of research and shortcomings in the field, and discuss the potential challenges in the future, including task specificity, robustness, standard evaluation, etc. We hope that this review can showcase the overall research context of traditional, Transformer and Mamba attention methods, provide a clear reference for subsequent research, and inspire more advanced attention research, not only in medical image segmentation, but also in other image analysis scenarios. Finally, we maintain the paper list and open-source code at here.

源语言英语
文章编号100721
期刊Computer Science Review
56
DOI
出版状态已出版 - 5月 2025

指纹

探究 'Advances in attention mechanisms for medical image segmentation' 的科研主题。它们共同构成独一无二的指纹。

引用此