ADAPTIVE DETAIL INJECTION-BASED FEATURE PYRAMID NETWORK FOR PAN-SHARPENING

Yi Sun, Yuanlin Zhang, Yuan Yuan

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Many remarkable works have been proposed to deal with distortions problems in image fusion to date. However, the spectral distortion and the spatial distortion cannot always be well addressed at the same time. To deal with this, we propose an Adaptive Feature Pyramid Network (AFPN) to efficiently embed an Adaptive Detail Injection (ADI) module at different scales. Feature-domain injection gains are proposed in the ADI module to adaptively modulate spatial information and guide a refined detail injection. Furthermore, we propose a texture loss function to further guide our model to learn detail perception in each band. Experiments on QuickBird and GaoFen-1 datasets show that our method achieves superior performance and produces visually pleasing fusion images. Our code is available at https://github.com/yisun98/AFPN.

源语言英语
主期刊名2022 IEEE International Conference on Image Processing, ICIP 2022 - Proceedings
出版商IEEE Computer Society
1646-1650
页数5
ISBN(电子版)9781665496209
DOI
出版状态已出版 - 2022
活动29th IEEE International Conference on Image Processing, ICIP 2022 - Bordeaux, 法国
期限: 16 10月 202219 10月 2022

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议29th IEEE International Conference on Image Processing, ICIP 2022
国家/地区法国
Bordeaux
时期16/10/2219/10/22

指纹

探究 'ADAPTIVE DETAIL INJECTION-BASED FEATURE PYRAMID NETWORK FOR PAN-SHARPENING' 的科研主题。它们共同构成独一无二的指纹。

引用此