A two-level hierarchical EDA using conjugate priori

Bo Wang, Hua Xu, Yuan Yuan

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Estimation of distribution algorithms (EDAs) are stochastic optimization methods that guide the search by building and sampling probabilistic models. Inspired by Bayesian inference, we proposed a two-level hierarchical model based on beta distribution. Beta distribution is the conjugate priori for binomial distribution. Besides, we introduced a learning rate function into the framework to control the model update. To demonstrate the effectiveness and applicability of our proposed algorithm, experiments are carried out on the 01-knapsack problems. Experimental results show that the proposed algorithm outperforms cGA, PBIL and QEA.

源语言英语
主期刊名GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference
出版商Association for Computing Machinery
57-58
页数2
ISBN(印刷版)9781450328814
DOI
出版状态已出版 - 2014
已对外发布
活动16th Genetic and Evolutionary Computation Conference Companion, GECCO 2014 Companion - Vancouver, BC, 加拿大
期限: 12 7月 201416 7月 2014

出版系列

姓名GECCO 2014 - Companion Publication of the 2014 Genetic and Evolutionary Computation Conference

会议

会议16th Genetic and Evolutionary Computation Conference Companion, GECCO 2014 Companion
国家/地区加拿大
Vancouver, BC
时期12/07/1416/07/14

指纹

探究 'A two-level hierarchical EDA using conjugate priori' 的科研主题。它们共同构成独一无二的指纹。

引用此