A Successful Strategy for Multichannel Iterated Prisoner's Dilemma

Zhen Wang, Zhaoheng Cao, Juan Shi, Peican Zhu, Shuyue Hu, Chen Chu

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Iterated prisoner's dilemma (IPD) and its variants are fundamental models for understanding the evolution of cooperation in human society as well as AI systems. In this paper, we focus on multichannel IPD, and examine how an agent should behave to obtain generally high payoffs under this setting. We propose a novel strategy that chooses to cooperate or defect by considering the difference in the cumulative number of defections between two agents. We show that our proposed strategy is nice, retaliatory, and forgiving. Moreover, we analyze the performance of our proposed strategy across different scenarios, including the self-play settings with and without errors, as well as when facing various opponent strategies. In particular, we show that our proposed strategy is invincible and never loses to any opponent strategy in terms of the expected payoff. Last but not least, we empirically validate the evolutionary advantage of our strategy, and demonstrate its potential to serve as a catalyst for cooperation emergence.

源语言英语
主期刊名Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
编辑Kate Larson
出版商International Joint Conferences on Artificial Intelligence
274-282
页数9
ISBN(电子版)9781956792041
出版状态已出版 - 2024
活动33rd International Joint Conference on Artificial Intelligence, IJCAI 2024 - Jeju, 韩国
期限: 3 8月 20249 8月 2024

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
ISSN(印刷版)1045-0823

会议

会议33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
国家/地区韩国
Jeju
时期3/08/249/08/24

指纹

探究 'A Successful Strategy for Multichannel Iterated Prisoner's Dilemma' 的科研主题。它们共同构成独一无二的指纹。

引用此