A robust converted measurement Kalman filter for target tracking

Lian Meng Jiao, Quan Pan, Xiao Xue Feng, Feng Yang

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

This paper proposes a robust converted measurement Kalman filter (CMKF) algorithm to realize the target tracking with nonlinear measurement equations. At each processing index, the new algorithm chooses the more accurate state estimate from the state prediction and the sensor's measurement. The new algorithm then computes the converted measurement's error mean and the corresponding debiased converted measurement's error covariance conditioned on the chosen state estimate. Simulation results demonstrate the new CMKF's robust tracking performance as compared to the traditional DCMKF and MUCMKF. As a conclusion, the proposed algorithm can realize the target tracking with the non-linear measurement equations with well performance in different scenarios.

源语言英语
主期刊名Proceedings of the 31st Chinese Control Conference, CCC 2012
3754-3758
页数5
出版状态已出版 - 2012
活动31st Chinese Control Conference, CCC 2012 - Hefei, 中国
期限: 25 7月 201227 7月 2012

出版系列

姓名Chinese Control Conference, CCC
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议31st Chinese Control Conference, CCC 2012
国家/地区中国
Hefei
时期25/07/1227/07/12

指纹

探究 'A robust converted measurement Kalman filter for target tracking' 的科研主题。它们共同构成独一无二的指纹。

引用此