摘要
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT-induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell-killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG-Py NPs) prepared by using a 2-pyridone-based diblock polymer (PEG-Py) to encapsulate a semiconducting, heavy-atom-free pyrrolopyrrolidone-tetraphenylethylene (DPPTPE) with high singlet-oxygen-generation ability both in dichloromethane and water. The PEG-Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence-imaging-guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.
源语言 | 英语 |
---|---|
页(从-至) | 8833-8838 |
页数 | 6 |
期刊 | Angewandte Chemie - International Edition |
卷 | 59 |
期 | 23 |
DOI | |
出版状态 | 已出版 - 2 6月 2020 |