TY - JOUR
T1 - A New Framework for Automatic Detection of Motor and Mental Imagery EEG Signals for Robust BCI Systems
AU - Yu, Xiaojun
AU - Aziz, Muhammad Zulkifal
AU - Sadiq, Muhammad Tariq
AU - Fan, Zeming
AU - Xiao, Gaoxi
N1 - Publisher Copyright:
© 1963-2012 IEEE.
PY - 2021
Y1 - 2021
N2 - Nonstationary signal decomposition (SD) is a primary procedure to extract monotonic components or modes from electroencephalogram (EEG) signals for the development of robust brain-computer interface (BCI) systems. This study proposes a novel automated computerized framework for proficient identification of motor and mental imagery (MeI) EEG tasks by employing empirical Fourier decomposition (EFD) and improved EFD (IEFD) methods. Specifically, the multiscale principal component analysis (MSPCA) is rendered to denoise EEG data first, and then, EFD is utilized to decompose nonstationary EEG into subsequent modes, while the IEFD criterion is proposed for a single conspicuous mode selection. Finally, the time-and frequency-domain features are extracted and classified with a feedforward neural network (FFNN) classifier. Extensive experiments are conducted on four multichannel motor and MeI data sets from BCI competitions II and III using a tenfold cross-validation strategy. Results compared with the other existing methods demonstrated that the highest classification accuracies of 99.82% (data set IV-A), 93.33% (data set IV-b), 91.96% (data set III), and 88.08% (data set V) in subject-specific scenarios, while 82.70% (data set IV-A) in the subject-independent framework are achieved for IEFD with FFNN classifiers collectively. The overall exploratory results authenticate that the proposed IEFD-based automated computerized framework not only outperforms the conventional SD methods but is also robust and computationally efficient for the development of subject-dependent and subject-independent BCI systems.
AB - Nonstationary signal decomposition (SD) is a primary procedure to extract monotonic components or modes from electroencephalogram (EEG) signals for the development of robust brain-computer interface (BCI) systems. This study proposes a novel automated computerized framework for proficient identification of motor and mental imagery (MeI) EEG tasks by employing empirical Fourier decomposition (EFD) and improved EFD (IEFD) methods. Specifically, the multiscale principal component analysis (MSPCA) is rendered to denoise EEG data first, and then, EFD is utilized to decompose nonstationary EEG into subsequent modes, while the IEFD criterion is proposed for a single conspicuous mode selection. Finally, the time-and frequency-domain features are extracted and classified with a feedforward neural network (FFNN) classifier. Extensive experiments are conducted on four multichannel motor and MeI data sets from BCI competitions II and III using a tenfold cross-validation strategy. Results compared with the other existing methods demonstrated that the highest classification accuracies of 99.82% (data set IV-A), 93.33% (data set IV-b), 91.96% (data set III), and 88.08% (data set V) in subject-specific scenarios, while 82.70% (data set IV-A) in the subject-independent framework are achieved for IEFD with FFNN classifiers collectively. The overall exploratory results authenticate that the proposed IEFD-based automated computerized framework not only outperforms the conventional SD methods but is also robust and computationally efficient for the development of subject-dependent and subject-independent BCI systems.
KW - Biomedical signal processing
KW - brain-computer interface (BCI)
KW - computer-Aided diagnosis (CAD)
KW - electroencephalography
KW - empirical Fourier decomposition (EFD)
KW - mental imagery (MeI)
KW - motor imagery (MI)
UR - http://www.scopus.com/inward/record.url?scp=85103280355&partnerID=8YFLogxK
U2 - 10.1109/TIM.2021.3069026
DO - 10.1109/TIM.2021.3069026
M3 - 文章
AN - SCOPUS:85103280355
SN - 0018-9456
VL - 70
JO - IEEE Transactions on Instrumentation and Measurement
JF - IEEE Transactions on Instrumentation and Measurement
M1 - 9387339
ER -