A multi-step auxetic metamaterial with instability regulation

Penghui Yu, Peijie Zhang, Qingxiang Ji, Fan Yang, Xiaojun Tan, Xueyan Chen, Huifeng Tan, Vincent Laude, Muamer Kadic

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

A stable deformation mode is highly desired for mechanical metamaterials, especially when coupled with a negative Poisson's ratio. However, such metamaterials often face challenges in terms of scalability toward large deformation or strain. In response, we propose a multi-step hierarchical auxetic metamaterial design paradigm, incorporating a series of incrementally scaled-down structures with same scale factor α into a re-entrant framework. This design enables instability regulation and multi-step deformation capabilities while preserving auxetic behavior, even under significant strain. Such multi-step metamaterials exhibit excellent properties, including tailored multi-phase compression modulus and strength, along with an enhanced energy absorption capacity that is as large as 2.1 times that of the original auxetic metamaterial. Experiments and simulations demonstrate that the deformation mechanism and compression response of the proposed multi-step auxetics are strongly influenced by the reduction factor and the order of the inner structure. A particularly intriguing observation is that the incorporation of embedded microstructures can restore stable deformation, even in the presence of significant initial instability, particularly with a reduction factor of 1/5. At high relative density, its specific energy absorption stands out favorably compared to other configurations, highlighting the success of the recoverable buckling mechanism. This work paves the way for designing multi-step mechanical metamaterials for use in impact resistance and body protection.

源语言英语
文章编号113040
期刊International Journal of Solids and Structures
305
DOI
出版状态已出版 - 1 12月 2024

指纹

探究 'A multi-step auxetic metamaterial with instability regulation' 的科研主题。它们共同构成独一无二的指纹。

引用此