A MIMO Radar Angle Tracking Method based on Adaptive Parallel Factor Decomposition

Jiangwen Zhou, Qing Liu, Jian Xie, Yanyun Gong, Ling Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

To address the problem of high computational complexity in the existing Direction of Arrival (DOA) and Direction of Departure (DOD) tracking algorithms for Multiple Input Multiple Output (MIMO) radar systems, this paper proposes a joint DOA-DOD tracking algorithm for moving targets utilizing the adaptive parallel factor (PARAFAC) decomposition of the multidimensional received data. By establishing a third-order measurement tensor signal model, the proposed adaptive PARAFAC tracking algorithm firstly estimates both the transmit and receive array manifolds jointly, and further tracks the DOD and DOA parameters of the moving targets. According to the simulation results, this approach effectively reduces the computational complexity and improves the real-time performance.

源语言英语
主期刊名2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), INC-USNC-URSI 2024 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
236-237
页数2
ISBN(电子版)9789463968119
DOI
出版状态已出版 - 2024
活动2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), INC-USNC-URSI 2024 - Florence, 意大利
期限: 14 7月 202419 7月 2024

出版系列

姓名2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), INC-USNC-URSI 2024 - Proceedings

会议

会议2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), INC-USNC-URSI 2024
国家/地区意大利
Florence
时期14/07/2419/07/24

指纹

探究 'A MIMO Radar Angle Tracking Method based on Adaptive Parallel Factor Decomposition' 的科研主题。它们共同构成独一无二的指纹。

引用此