A Gaussian Mixture Smoother for Markovian Jump Linear Systems with Non-Gaussian Noises

Yanbo Yang, Yuemei Qin, Yanting Yang, Quan Pan, Zhi Lil

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

This paper considers the state smoothing problem for Markovian jump linear systems with non-Gaussian noises which obey Gaussian mixture distributions. On the basis of decomposing the total probability at the point of two adjacent Markov jumping parameters at the current and the next epochs, the posterior probability density of the state for smoothing is derived recursively. Then, through transforming the quotient of two Gaussian mixtures into the corresponding multiplication under the possible two adjacent Markov modes, a recursive Gaussian mixture smoother is designed with the conditional posterior probability density under each hypothesis being approximated by the Gaussian mixture. A maneuvering target tracking example with non-Gaussian noises validates the proposed method.

源语言英语
主期刊名2018 21st International Conference on Information Fusion, FUSION 2018
出版商Institute of Electrical and Electronics Engineers Inc.
2564-2571
页数8
ISBN(印刷版)9780996452762
DOI
出版状态已出版 - 5 9月 2018
活动21st International Conference on Information Fusion, FUSION 2018 - Cambridge, 英国
期限: 10 7月 201813 7月 2018

出版系列

姓名2018 21st International Conference on Information Fusion, FUSION 2018

会议

会议21st International Conference on Information Fusion, FUSION 2018
国家/地区英国
Cambridge
时期10/07/1813/07/18

指纹

探究 'A Gaussian Mixture Smoother for Markovian Jump Linear Systems with Non-Gaussian Noises' 的科研主题。它们共同构成独一无二的指纹。

引用此