A feature extraction method based on noise reduction for circRNA-miRNA interaction prediction combining multi-structure features in the association networks

Xin Fei Wang, Chang Qing Yu, Zhu Hong You, Li Ping Li, Wen Zhun Huang, Zhong Hao Ren, Yue Chao Li, Meng Meng Wei

科研成果: 期刊稿件文章同行评审

22 引用 (Scopus)

摘要

Motivation: A large number of studies have shown that circular RNA (circRNA) affects biological processes by competitively binding miRNA, providing a new perspective for the diagnosis, and treatment of human diseases. Therefore, exploring the potential circRNA-miRNA interactions (CMIs) is an important and urgent task at present. Although some computational methods have been tried, their performance is limited by the incompleteness of feature extraction in sparse networks and the low computational efficiency of lengthy data. Results: In this paper, we proposed JSNDCMI, which combines the multi-structure feature extraction framework and Denoising Autoencoder (DAE) to meet the challenge of CMI prediction in sparse networks. In detail, JSNDCMI integrates functional similarity and local topological structure similarity in the CMI network through the multi-structure feature extraction framework, then forces the neural network to learn the robust representation of features through DAE and finally uses the Gradient Boosting Decision Tree classifier to predict the potential CMIs. JSNDCMI produces the best performance in the 5-fold cross-validation of all data sets. In the case study, seven of the top 10 CMIs with the highest score were verified in PubMed. Availability: The data and source code can be found at https://github.com/1axin/JSNDCMI.

源语言英语
文章编号bbad111
期刊Briefings in Bioinformatics
24
3
DOI
出版状态已出版 - 1 5月 2023

指纹

探究 'A feature extraction method based on noise reduction for circRNA-miRNA interaction prediction combining multi-structure features in the association networks' 的科研主题。它们共同构成独一无二的指纹。

引用此