跳到主要导航
跳到搜索
跳到主要内容
西北工业大学 国内
English
中文
国内
简介
研究单位
科研成果
按专业知识、名称或附属进行搜索
A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network
Yuantao Yang, Huailiang Zheng,
Yongbo Li
, Minqiang Xu, Yushu Chen
航空学院
Harbin Institute of Technology
科研成果
:
期刊稿件
›
文章
›
同行评审
98
引用 (Scopus)
综述
指纹
指纹
探究 'A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Computer Science
Convolutional Neural Network
100%
Deep Learning Method
20%
Extracted Feature
20%
fault diagnose method
40%
Fault Diagnosis
100%
Feature Extraction
60%
Feature Selection
20%
Health Condition
40%
Intelligent Fault Diagnosis
20%
Linear Relationship
20%
Network Architecture
40%
Operating Condition
20%
Representation Learning
20%
Superior Performance
20%
Engineering
Centrifugal Pump
20%
Convolutional Neural Network
100%
Deep Learning Method
20%
Extracted Feature
20%
Fault Diagnosis
100%
Feature Extraction
60%
Human Labor
20%
Linear Relationship
20%
Model Diagnosis
20%
Rotating Machinery
100%
Biochemistry, Genetics and Molecular Biology
Feature Extraction
100%
Signal Processing
33%
Chemical Engineering
Deep Learning Method
20%
Neural Network
100%