摘要
Rechargeable aluminum-ion batteries (AIBs) are considered as a new generation of large-scale energy-storage devices due to their attractive features of abundant aluminum source, high specific capacity, and high energy density. However, AIBs suffer from a lack of suitable cathode materials with desirable capacity and long-term stability, which severely restricts the practical application of AIBs. Herein, a binder-free and self-standing cobalt sulfide encapsulated in carbon nanotubes is reported as a novel cathode material for AIBs. The resultant new electrode material exhibits not only high discharge capacity (315 mA h g−1 at 100 mA g−1) and enhanced rate performance (154 mA h g−1 at 1 A g−1), but also extraordinary cycling stability (maintains 87 mA h g−1 after 6000 cycles at 1 A g−1). The free-standing feature of the electrode also effectively suppresses the side reactions and material disintegrations in AIBs. The new findings reported here highlight the possibility for designing high-performance cathode materials for scalable and flexible AIBs.
源语言 | 英语 |
---|---|
文章编号 | 1703824 |
期刊 | Advanced Materials |
卷 | 30 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 11 1月 2018 |
已对外发布 | 是 |