3D Focusing-and-Matching Network for Multi-Instance Point Cloud Registration

Liyuan Zhang, Le Hui, Qi Liu, Bo Li, Yuchao Dai

科研成果: 期刊稿件会议文章同行评审

摘要

Multi-instance point cloud registration aims to estimate the pose of all instances of a model point cloud in the whole scene. Existing methods all adopt the strategy of first obtaining the global correspondence and then clustering to obtain the pose of each instance. However, due to the cluttered and occluded objects in the scene, it is difficult to obtain an accurate correspondence between the model point cloud and all instances in the scene. To this end, we propose a simple yet powerful 3D focusing-and-matching network for multi-instance point cloud registration by learning the multiple pair-wise point cloud registration. Specifically, we first present a 3D multi-object focusing module to locate the center of each object and generate object proposals. By using self-attention and cross-attention to associate the model point cloud with structurally similar objects, we can locate potential matching instances by regressing object centers. Then, we propose a 3D dual-masking instance matching module to estimate the pose between the model point cloud and each object proposal. It performs instance mask and overlap mask masks to accurately predict the pair-wise correspondence. Extensive experiments on two public benchmarks, Scan2CAD and ROBI, show that our method achieves a new state-of-the-art performance on the multi-instance point cloud registration task. The project page is at https://npucvr.github.io/3DFMNet/.

源语言英语
期刊Advances in Neural Information Processing Systems
37
出版状态已出版 - 2024
活动38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, 加拿大
期限: 9 12月 202415 12月 2024

指纹

探究 '3D Focusing-and-Matching Network for Multi-Instance Point Cloud Registration' 的科研主题。它们共同构成独一无二的指纹。

引用此