TY - JOUR
T1 - 3D Focusing-and-Matching Network for Multi-Instance Point Cloud Registration
AU - Zhang, Liyuan
AU - Hui, Le
AU - Liu, Qi
AU - Li, Bo
AU - Dai, Yuchao
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Multi-instance point cloud registration aims to estimate the pose of all instances of a model point cloud in the whole scene. Existing methods all adopt the strategy of first obtaining the global correspondence and then clustering to obtain the pose of each instance. However, due to the cluttered and occluded objects in the scene, it is difficult to obtain an accurate correspondence between the model point cloud and all instances in the scene. To this end, we propose a simple yet powerful 3D focusing-and-matching network for multi-instance point cloud registration by learning the multiple pair-wise point cloud registration. Specifically, we first present a 3D multi-object focusing module to locate the center of each object and generate object proposals. By using self-attention and cross-attention to associate the model point cloud with structurally similar objects, we can locate potential matching instances by regressing object centers. Then, we propose a 3D dual-masking instance matching module to estimate the pose between the model point cloud and each object proposal. It performs instance mask and overlap mask masks to accurately predict the pair-wise correspondence. Extensive experiments on two public benchmarks, Scan2CAD and ROBI, show that our method achieves a new state-of-the-art performance on the multi-instance point cloud registration task. The project page is at https://npucvr.github.io/3DFMNet/.
AB - Multi-instance point cloud registration aims to estimate the pose of all instances of a model point cloud in the whole scene. Existing methods all adopt the strategy of first obtaining the global correspondence and then clustering to obtain the pose of each instance. However, due to the cluttered and occluded objects in the scene, it is difficult to obtain an accurate correspondence between the model point cloud and all instances in the scene. To this end, we propose a simple yet powerful 3D focusing-and-matching network for multi-instance point cloud registration by learning the multiple pair-wise point cloud registration. Specifically, we first present a 3D multi-object focusing module to locate the center of each object and generate object proposals. By using self-attention and cross-attention to associate the model point cloud with structurally similar objects, we can locate potential matching instances by regressing object centers. Then, we propose a 3D dual-masking instance matching module to estimate the pose between the model point cloud and each object proposal. It performs instance mask and overlap mask masks to accurately predict the pair-wise correspondence. Extensive experiments on two public benchmarks, Scan2CAD and ROBI, show that our method achieves a new state-of-the-art performance on the multi-instance point cloud registration task. The project page is at https://npucvr.github.io/3DFMNet/.
UR - http://www.scopus.com/inward/record.url?scp=105000546587&partnerID=8YFLogxK
M3 - 会议文章
AN - SCOPUS:105000546587
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -