摘要
Organic–inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 × 1014 cm−3), and unprecedented 9 GHz charge-carrier mobility (71 cm2 V−1 s−1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). The TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.
源语言 | 英语 |
---|---|
文章编号 | 1606831 |
期刊 | Advanced Materials |
卷 | 29 |
期 | 23 |
DOI | |
出版状态 | 已出版 - 20 6月 2017 |
已对外发布 | 是 |