When Laplacian Scale Mixture Meets Three-Layer Transform: A Parametric Tensor Sparsity for Tensor Completion

Jize Xue, Yongqiang Zhao, Yuanyang Bu, Jonathan Cheung Wai Chan, Seong G. Kong

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

Recently, tensor sparsity modeling has achieved great success in the tensor completion (TC) problem. In real applications, the sparsity of a tensor can be rationally measured by low-rank tensor decomposition. However, existing methods either suffer from limited modeling power in estimating accurate rank or have difficulty in depicting hierarchical structure underlying such data ensembles. To address these issues, we propose a parametric tensor sparsity measure model, which encodes the sparsity for a general tensor by Laplacian scale mixture (LSM) modeling based on three-layer transform (TLT) for factor subspace prior with Tucker decomposition. Specifically, the sparsity of a tensor is first transformed into factor subspace, and then factor sparsity in the gradient domain is used to express the local similarity in within-mode. To further refine the sparsity, we adopt LSM by the transform learning scheme to self-adaptively depict deeper layer structured sparsity, in which the transformed sparse matrices in the sense of a statistical model can be modeled as the product of a Laplacian vector and a hidden positive scalar multiplier. We call the method as parametric tensor sparsity delivered by LSM-TLT. By a progressive transformation operator, we formulate the LSM-TLT model and use it to address the TC problem, and then the alternating direction method of multipliers-based optimization algorithm is designed to solve the problem. The experimental results on RGB images, hyperspectral images (HSIs), and videos demonstrate the proposed method outperforms state of the arts.

Original languageEnglish
Pages (from-to)13887-13901
Number of pages15
JournalIEEE Transactions on Cybernetics
Volume52
Issue number12
DOIs
StatePublished - 1 Dec 2022

Keywords

  • Hierarchical representation
  • Laplacian scale mixture (LSM)
  • tensor completion (TC)
  • three-layer transform (TLT) sparsity
  • tucker decomposition

Fingerprint

Dive into the research topics of 'When Laplacian Scale Mixture Meets Three-Layer Transform: A Parametric Tensor Sparsity for Tensor Completion'. Together they form a unique fingerprint.

Cite this