WEIGHTED SPARSITY CONSTRAINT TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING

Yuan Yuan, Le Dong

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Recently, the unmixing methods based on non-negative tensor factorization (NTF) have received a lot of attention. Many NTF-based methods combine total variation (TV) regularization, aiming at maintaining the smoothness of the abundance maps to improve the performance of unmixing. However, the existing TV regularization ignores the sparsity sharing on the spatial difference images among different bands. To tackle this issue, a weighted total variation regularizer on the spatial difference maps of abundances is proposed in this paper, which uses the L2,1 norm to explore the sparse structure in abundances along the spectral dimension. In addition, the L1/2 norm is used to enhance the spatial sparsity of abundances. The proposed method can not only enhance the sparsity in abundances, but also keep the spatial similarity characteristics of data. Compared with the existing popular methods, the proposed method has superior performance on both synthetic data and real data.

Original languageEnglish
Title of host publicationIGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3333-3336
Number of pages4
ISBN (Electronic)9781665403696
DOIs
StatePublished - 2021
Event2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, Belgium
Duration: 12 Jul 202116 Jul 2021

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2021-July

Conference

Conference2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
Country/TerritoryBelgium
CityBrussels
Period12/07/2116/07/21

Keywords

  • Hyperspectral unmixing
  • Sparse characteristics
  • Tensor factorization
  • Total variation

Fingerprint

Dive into the research topics of 'WEIGHTED SPARSITY CONSTRAINT TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING'. Together they form a unique fingerprint.

Cite this