Abstract
Crowding counting research evolves quickly by the lever-age of development in deep learning. Many researchers put their efforts into crowd counting tasks and have achieved many significant improvements. However, current datasets still barely satisfy this evolution and high quality evaluation data is urgent. Motivated by high quality and quantity study in crowding counting, we collect a drone-captured dataset formed by 5, 468 images(images in RGB and thermal appear in pairs and 2, 734 respectively). There are 1, 807 pairs of images for training, and 927 pairs for testing. We manually annotate persons with points in each frame. Based on this dataset, we organized the Vision Meets Drone Crowd Counting Challenge(Visdrone-CC2021) in conjunction with the International Conference on Computer Vision (ICCV 2021). Our challenge attracts many researchers to join, which pave the road of speed up the milestone in crowding counting. To summarize the competition, we select the most remarkable algorithms from participants' sub-missions and provide a detailed analysis of the evaluation results. More information can be found at the website: http://www.aiskyeye.com/.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2830-2838 |
Number of pages | 9 |
ISBN (Electronic) | 9781665401913 |
DOIs | |
State | Published - 2021 |
Event | 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 - Virtual, Online, Canada Duration: 11 Oct 2021 → 17 Oct 2021 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
Volume | 2021-October |
ISSN (Print) | 1550-5499 |
Conference
Conference | 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 11/10/21 → 17/10/21 |