TransOrga: End-To-End Multi-modal Transformer-Based Organoid Segmentation

Yiming Qin, Jiajia Li, Yulong Chen, Zikai Wang, Yu An Huang, Zhuhong You, Lun Hu, Pengwei Hu, Feng Tan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Organoid research plays an important role in drug screening and disease modeling. Obtaining accurate information about organoid morphology, number, and size is fundamental to this research. However, previous methods relied on fluorescence labeling which can harm organoids or have problems with accuracy and robustness. In this paper, we first introduce Transformer architecture into the organoid segmentation task and propose an end-to-end multi-modal method named TransOrga. To enhance the accuracy and robustness, we utilize a multi-modal feature extraction module to blend spatial and frequency domain features of organoid images. Furthermore, we propose a multi-branch aggregation decoder that learns diverse contexts from various Transformer layers to predict the segmentation mask progressively. In addition, we design a series of losses, including focal loss, dice loss, compact loss and auxiliary loss, to supervise our model to predict more accurate segmentation results with rational sizes and shapes. Our extensive experiments demonstrate that our method outperforms the baselines in organoid segmentation and provides an automatic, robust, and fluorescent-free tool for organoid research.

Original languageEnglish
Title of host publicationAdvanced Intelligent Computing Technology and Applications - 19th International Conference, ICIC 2023, Proceedings
EditorsDe-Shuang Huang, Prashan Premaratne, Baohua Jin, Boyang Qu, Kang-Hyun Jo, Abir Hussain
PublisherSpringer Science and Business Media Deutschland GmbH
Pages460-472
Number of pages13
ISBN (Print)9789819947485
DOIs
StatePublished - 2023
Event19th International Conference on Intelligent Computing, ICIC 2023 - Zhengzhou, China
Duration: 10 Aug 202313 Aug 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14088 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference19th International Conference on Intelligent Computing, ICIC 2023
Country/TerritoryChina
CityZhengzhou
Period10/08/2313/08/23

Keywords

  • Multi-modal
  • Organoid segmentation
  • Transformer

Fingerprint

Dive into the research topics of 'TransOrga: End-To-End Multi-modal Transformer-Based Organoid Segmentation'. Together they form a unique fingerprint.

Cite this