TY - JOUR
T1 - Transition from Crystal to Metallic Glass and Micromechanical Property Change of Fe-B-Si Alloy During Rapid Solidification
AU - Zhang, P. C.
AU - Chang, J.
AU - Wang, H. P.
N1 - Publisher Copyright:
© 2019, The Minerals, Metals & Materials Society and ASM International.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - The effects of high undercooling and a large cooling rate can be achieved by the use of a containerless drop tube technique, which is conducive to rapid solidification and formation of a metastable phase. Here, the rapid solidification of Fe78Si13B9 (S1) and Fe78Si9B13 (S2) alloys was completed under microgravity condition. Based on theoretical calculations, a maximum undercooling of 433 K (0.29 TL) and 412 K (0.28 TL) was obtained, respectively. The microstructure evolution and the formation of an amorphous-nanocrystalline structure for the two alloys were compared and analyzed. The results show that S2 alloy has better amorphous forming ability and higher hardness. During the solidification of S1 alloy, the primary phase α-Fe grows by the manner of dendrites, and the secondary dendrite arm spacing decreases exponentially with increased undercooling. An amorphous-nanocrystalline structure is developed when the undercooling is increased up to 388 K; S2 alloy forms an amorphous-nanocrystalline structure at an undercooling of 275 K and is completely amorphized after exceeding an undercooling of 402 K. In addition, the hardness and elastic modulus are acquired by nanoindentation technology under different degrees of undercooling. The phase constitution, morphology, distribution, and grain refinement of the alloys have important effects on the micromechanical properties of these alloys.
AB - The effects of high undercooling and a large cooling rate can be achieved by the use of a containerless drop tube technique, which is conducive to rapid solidification and formation of a metastable phase. Here, the rapid solidification of Fe78Si13B9 (S1) and Fe78Si9B13 (S2) alloys was completed under microgravity condition. Based on theoretical calculations, a maximum undercooling of 433 K (0.29 TL) and 412 K (0.28 TL) was obtained, respectively. The microstructure evolution and the formation of an amorphous-nanocrystalline structure for the two alloys were compared and analyzed. The results show that S2 alloy has better amorphous forming ability and higher hardness. During the solidification of S1 alloy, the primary phase α-Fe grows by the manner of dendrites, and the secondary dendrite arm spacing decreases exponentially with increased undercooling. An amorphous-nanocrystalline structure is developed when the undercooling is increased up to 388 K; S2 alloy forms an amorphous-nanocrystalline structure at an undercooling of 275 K and is completely amorphized after exceeding an undercooling of 402 K. In addition, the hardness and elastic modulus are acquired by nanoindentation technology under different degrees of undercooling. The phase constitution, morphology, distribution, and grain refinement of the alloys have important effects on the micromechanical properties of these alloys.
UR - http://www.scopus.com/inward/record.url?scp=85076373366&partnerID=8YFLogxK
U2 - 10.1007/s11663-019-01748-0
DO - 10.1007/s11663-019-01748-0
M3 - 文章
AN - SCOPUS:85076373366
SN - 1073-5615
VL - 51
SP - 327
EP - 337
JO - Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
JF - Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
IS - 1
ER -