Trajectory prediction-based guidance law

Mengxuan Li, Jianguo Guo, Ruimin Jiang

Research output: Contribution to journalConference articlepeer-review

Abstract

This paper proposes a guidance law based on trajectory prediction, aiming to address the difficulty of traditional guidance laws in meeting high-speed and highly maneuverable vehicles. The unscented Kalman filtering (UKF) technique is employed to estimate the target's motion and predict the virtual impact point using the Singer model and measuring model. The midcourse guidance law is applied to the virtual target, taking into account the constraint of the intersection angle, while the terminal guidance utilizes modified proportional guidance. To mitigate the overload chattering in the transition sections of both midcourse and terminal guidance, the distance is used to modify the transition section of the terminal guidance. Simulation results demonstrate that the proposed guidance law effectively reduces both the encounter angle and the required maneuvering. Furthermore, to minimize midcourse guidance errors, the prediction results of the virtual target are continually updated during the trace process. This method can also be applied to trail other highly maneuverable targets.

Original languageEnglish
Article number012034
JournalJournal of Physics: Conference Series
Volume2691
Issue number1
DOIs
StatePublished - 2024
Event2023 2nd International Conference on Mechanical, Aerospace Technology and Materials Application, MATMA 2023 - Hybrid, Shenyang, China
Duration: 15 Sep 202317 Sep 2023

Fingerprint

Dive into the research topics of 'Trajectory prediction-based guidance law'. Together they form a unique fingerprint.

Cite this