Tool flank wear recognition based on the variation of milling force vector in end milling

Yongfeng Hou, Dinghua Zhang, Ming Luo, Baohai Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In the manufacturing process, the cutting tool wear is an important affecting factor of the product quality. Tool wear condition monitoring is an effective means to ensure the workpiece quality, and to improve the tool life. Tool flank wear will directly lead to the variation of milling force. Therefore, a flank wear recognition approach of flat end milling tool based on the influence of the tool wear on the milling force vector is proposed in this paper. In this approach, the friction effect force and the cutting force of milling tool are treated separately, the milling force model of flat end milling tool is established, and it is believed that the milling forces of the tool without flank wear are not influenced by the friction effect. The influence of the milling tool flank wear on the milling force vector variation is investigated, and this influence relationship is adopted to recognize the flank wear of flat end milling tool. Finally, the superalloy material is used to perform the wear milling experiment on the CNC machine tool. The experiment results show that, this approach can recognize the milling tool flank wear efficiently and accurately.

Original languageEnglish
Title of host publicationAIM 2014 - IEEE/ASME International Conference on Advanced Intelligent Mechatronics
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1622-1627
Number of pages6
ISBN (Print)9781479957361
DOIs
StatePublished - 2014
Event2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2014 - Besancon, France
Duration: 8 Jul 201411 Jul 2014

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM

Conference

Conference2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2014
Country/TerritoryFrance
CityBesancon
Period8/07/1411/07/14

Fingerprint

Dive into the research topics of 'Tool flank wear recognition based on the variation of milling force vector in end milling'. Together they form a unique fingerprint.

Cite this