TY - JOUR
T1 - Thermally stable and insensitive energetic metal-organic frameworks based on two new tetrazole ligands
AU - Li, Lu
AU - Chen, Si tong
AU - Song, Si wei
AU - Zhang, Qing hua
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/6
Y1 - 2023/6
N2 - Two new tetrazole ligands were designed and synthesized using simple methods in this study, namely 1H-tetrazole-5-carbohydrazide (HCHT, 1) and 2-amino-5-(1H-tetrazol-5-yl)-1,3,4-oxadiazole (HAOT, 2). Their solvent-free potassium salts [K(CHT)]n (3) and [K(AOT)]n (4) are new two-dimensional energetic metal-organic frameworks (EMOFs), and their structures were characterized using nuclear magnetic resonance (NMR), infrared spectroscopy (IR), mass spectrometry (MS), elemental analysis (EA), and single-crystal X-ray diffraction (SXRD). Both compounds 3 and 4 exhibit high decomposition temperatures (Td) of 314 °C and 310 °C, respectively and are highly insensitive to impact and friction stimuli (IS > 40 J, FS > 360 N). The detonation velocity and pressure of 3 were calculated at 9141 m s−1 and 29.0 GPa, respectively, and those of 4 were determined at 8423 m s−1 and 24.5 GPa, respectively. Furthermore, intermolecular interactions in 3 and 4 were analyzed using 2D fingerprint plots with associated Hirshfeld surfaces. In this manner, two thermally stable and insensitive EMOFs were developed based on two new tetrazole ligands.
AB - Two new tetrazole ligands were designed and synthesized using simple methods in this study, namely 1H-tetrazole-5-carbohydrazide (HCHT, 1) and 2-amino-5-(1H-tetrazol-5-yl)-1,3,4-oxadiazole (HAOT, 2). Their solvent-free potassium salts [K(CHT)]n (3) and [K(AOT)]n (4) are new two-dimensional energetic metal-organic frameworks (EMOFs), and their structures were characterized using nuclear magnetic resonance (NMR), infrared spectroscopy (IR), mass spectrometry (MS), elemental analysis (EA), and single-crystal X-ray diffraction (SXRD). Both compounds 3 and 4 exhibit high decomposition temperatures (Td) of 314 °C and 310 °C, respectively and are highly insensitive to impact and friction stimuli (IS > 40 J, FS > 360 N). The detonation velocity and pressure of 3 were calculated at 9141 m s−1 and 29.0 GPa, respectively, and those of 4 were determined at 8423 m s−1 and 24.5 GPa, respectively. Furthermore, intermolecular interactions in 3 and 4 were analyzed using 2D fingerprint plots with associated Hirshfeld surfaces. In this manner, two thermally stable and insensitive EMOFs were developed based on two new tetrazole ligands.
KW - Energetic metal-organic framework
KW - Hydrogen bond
KW - Insensitive
KW - Thermally stable
UR - http://www.scopus.com/inward/record.url?scp=85163556861&partnerID=8YFLogxK
U2 - 10.1016/j.enmf.2023.05.001
DO - 10.1016/j.enmf.2023.05.001
M3 - 文章
AN - SCOPUS:85163556861
SN - 2666-6472
VL - 4
SP - 57
EP - 62
JO - Energetic Materials Frontiers
JF - Energetic Materials Frontiers
IS - 2
ER -