TY - JOUR
T1 - Thermal shock behavior of a three-dimensional SiC/SiC composite
AU - Wu, Shoujun
AU - Cheng, Laifei
AU - Zhang, Litong
AU - Xu, Yongdong
PY - 2006/12
Y1 - 2006/12
N2 - Thermal shock behavior of a three-dimensional (3-D) SiC/SiC composite was studied using the water-quenched method. Thermal shock damage of the composite was assessed by scanning electron microscopy characterization and residual three-point-bending strength. In the thermal shock process, the composite displayed the same bending mechanical behaviors as those of the original composite and retained 80 pct of the original strength in the longitudinal direction after being quenched from 1200 °C to 25 °C in water for 100 cycles. However, the composite displayed anisotropy in resistance to thermal shock damage. The observed microdamage processes were as follows: (1) formation of micropores and long crack, (2) transfer and growth of pores, (3) saturation of the dimension and the density of pores, and (4) accelerated growth of the long crack along the longitudinal direction. The critical thermal shock number for the composite was about 50. When thermal shock was less than 50 cycles, the residual flexural strength of the composite decreased with thermal shock cycles increasing. When the number was greater than 50, the strength of the composite did not decrease further.
AB - Thermal shock behavior of a three-dimensional (3-D) SiC/SiC composite was studied using the water-quenched method. Thermal shock damage of the composite was assessed by scanning electron microscopy characterization and residual three-point-bending strength. In the thermal shock process, the composite displayed the same bending mechanical behaviors as those of the original composite and retained 80 pct of the original strength in the longitudinal direction after being quenched from 1200 °C to 25 °C in water for 100 cycles. However, the composite displayed anisotropy in resistance to thermal shock damage. The observed microdamage processes were as follows: (1) formation of micropores and long crack, (2) transfer and growth of pores, (3) saturation of the dimension and the density of pores, and (4) accelerated growth of the long crack along the longitudinal direction. The critical thermal shock number for the composite was about 50. When thermal shock was less than 50 cycles, the residual flexural strength of the composite decreased with thermal shock cycles increasing. When the number was greater than 50, the strength of the composite did not decrease further.
UR - http://www.scopus.com/inward/record.url?scp=33845978068&partnerID=8YFLogxK
U2 - 10.1007/s11661-006-1053-3
DO - 10.1007/s11661-006-1053-3
M3 - 文章
AN - SCOPUS:33845978068
SN - 1073-5623
VL - 37
SP - 3587
EP - 3592
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
IS - 12
ER -