TY - JOUR
T1 - The skew spectral radius and skew Randić spectral radius of general random oriented graphs
AU - Hu, Dan
AU - Broersma, Hajo
AU - Hou, Jiangyou
AU - Zhang, Shenggui
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/3/15
Y1 - 2024/3/15
N2 - Let G be a simple connected graph on n vertices, and let Gσ be an orientation of G with skew adjacency matrix S(Gσ). Let di be the degree of the vertex vi in G. The skew Randić matrix of Gσ is the n×n real skew symmetric matrix RS(Gσ)=[(RS)ij], where (RS)ij=−(RS)ji=(didj)−[Formula presented] if (vi,vj) is an arc of Gσ, and (RS)ij=(RS)ji=0 otherwise. The skew spectral radius ρS(Gσ) and the skew Randić spectral radius ρRS(Gσ) of Gσ are defined as the spectral radius of S(Gσ) and RS(Gσ) respectively. In this paper we give upper bounds for the skew spectral radius and skew Randić spectral radius of general random oriented graphs.
AB - Let G be a simple connected graph on n vertices, and let Gσ be an orientation of G with skew adjacency matrix S(Gσ). Let di be the degree of the vertex vi in G. The skew Randić matrix of Gσ is the n×n real skew symmetric matrix RS(Gσ)=[(RS)ij], where (RS)ij=−(RS)ji=(didj)−[Formula presented] if (vi,vj) is an arc of Gσ, and (RS)ij=(RS)ji=0 otherwise. The skew spectral radius ρS(Gσ) and the skew Randić spectral radius ρRS(Gσ) of Gσ are defined as the spectral radius of S(Gσ) and RS(Gσ) respectively. In this paper we give upper bounds for the skew spectral radius and skew Randić spectral radius of general random oriented graphs.
KW - General random oriented graphs
KW - Random skew adjacency matrix
KW - Random skew Randić matrix
KW - Skew Randić spectral radius
KW - Skew spectral radius
UR - http://www.scopus.com/inward/record.url?scp=85183708625&partnerID=8YFLogxK
U2 - 10.1016/j.laa.2024.01.003
DO - 10.1016/j.laa.2024.01.003
M3 - 文章
AN - SCOPUS:85183708625
SN - 0024-3795
VL - 685
SP - 125
EP - 137
JO - Linear Algebra and Its Applications
JF - Linear Algebra and Its Applications
ER -