TY - JOUR
T1 - The role of fluid exsolution in the Li enrichment in granitic pegmatites
T2 - A case study from the Dahongliutan Li ore field in West Kunlun
AU - Zeng, Zhong Cheng
AU - Fan, Jing Jing
AU - Wang, Zi Long
AU - Du, Biao
AU - Wang, Peng
AU - Hong, Zeng Lin
N1 - Publisher Copyright:
© 2025
PY - 2025/3
Y1 - 2025/3
N2 - Pegmatite-host Li deposits provide substantial Li resource in the globe. However, the mechanism of Li enrichment in granitic pegmatites remain enigmatic. Here, we report age and whole-rock geochemical data for the garnet-tourmaline-bearing granites (GTGs) and tourmaline-bearing granites (TGs) from the Dahongliutan rare-metal pegmatite ore field located in the Western Kunlun orogen, NW China. The formation of Li-rich pegmatites in this ore field was proposed to have an intimate temporal-spatial association to the two-mica granites (TMGs). Zircon U–Pb dating for the GTGs and TGs yielded ages of 203.2 ± 2.3 and 203.4 ± 2.7 Ma, respectively. These ages are slightly younger than those of the TMGs (ca. 220–208 Ma), but overlapping with or older than those of the Li-rich pegmatites (ca. 214–190 Ma) reported in this area. The GTGs and TGs have middle to upper crust-like Sr–Nd isotope compositions ((87Sr/86Sr)i = 0.7159–0.7227; εNd(t) = − 10.7 to − 9.67), similar to those of the TMGs and Li-rich pegmatites. The decreasing CaO, MgO, TFe2O3, Sr, Ba and rare earth element contents, and increasing Na2O, K2O contents and Na2O/K2O ratios from the TMGs to GTGs, and to TGs, suggests fractionation of biotite, plagioclase and K-feldspar, monazite, muscovite, and garnet from the TMG magma. These evidence together with the field observations indicate that these granites and pegmatites in the Dahongliutan ore field represent a cogenetic evolutionary sequence. However, the contents of the incompatible element of Li decrease sharply from the TMGs to GTGs and TGs, which is likely resulted from magmatic fluid exsolution. Geochemical modeling for Li show that fluid saturation occurred at the early stage of magma evolution. In the following, the exsoluted fluids accumulation accompany by extraction of large amounts of fluid-soluble elements such as Li and Cs from the residual melts, and their removal and migration away from the granite system, may be pivotal in the generation of the Li-rich pegmatites.
AB - Pegmatite-host Li deposits provide substantial Li resource in the globe. However, the mechanism of Li enrichment in granitic pegmatites remain enigmatic. Here, we report age and whole-rock geochemical data for the garnet-tourmaline-bearing granites (GTGs) and tourmaline-bearing granites (TGs) from the Dahongliutan rare-metal pegmatite ore field located in the Western Kunlun orogen, NW China. The formation of Li-rich pegmatites in this ore field was proposed to have an intimate temporal-spatial association to the two-mica granites (TMGs). Zircon U–Pb dating for the GTGs and TGs yielded ages of 203.2 ± 2.3 and 203.4 ± 2.7 Ma, respectively. These ages are slightly younger than those of the TMGs (ca. 220–208 Ma), but overlapping with or older than those of the Li-rich pegmatites (ca. 214–190 Ma) reported in this area. The GTGs and TGs have middle to upper crust-like Sr–Nd isotope compositions ((87Sr/86Sr)i = 0.7159–0.7227; εNd(t) = − 10.7 to − 9.67), similar to those of the TMGs and Li-rich pegmatites. The decreasing CaO, MgO, TFe2O3, Sr, Ba and rare earth element contents, and increasing Na2O, K2O contents and Na2O/K2O ratios from the TMGs to GTGs, and to TGs, suggests fractionation of biotite, plagioclase and K-feldspar, monazite, muscovite, and garnet from the TMG magma. These evidence together with the field observations indicate that these granites and pegmatites in the Dahongliutan ore field represent a cogenetic evolutionary sequence. However, the contents of the incompatible element of Li decrease sharply from the TMGs to GTGs and TGs, which is likely resulted from magmatic fluid exsolution. Geochemical modeling for Li show that fluid saturation occurred at the early stage of magma evolution. In the following, the exsoluted fluids accumulation accompany by extraction of large amounts of fluid-soluble elements such as Li and Cs from the residual melts, and their removal and migration away from the granite system, may be pivotal in the generation of the Li-rich pegmatites.
KW - Fluid exsolution
KW - Granites
KW - Li enrichment
KW - Petrogenesis
KW - West Kunlun
UR - http://www.scopus.com/inward/record.url?scp=85217703677&partnerID=8YFLogxK
U2 - 10.1016/j.oregeorev.2025.106491
DO - 10.1016/j.oregeorev.2025.106491
M3 - 文章
AN - SCOPUS:85217703677
SN - 0169-1368
VL - 178
JO - Ore Geology Reviews
JF - Ore Geology Reviews
M1 - 106491
ER -