TY - JOUR
T1 - TG-LLaVA
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
AU - Yan, Dawei
AU - Li, Pengcheng
AU - Li, Yang
AU - Chen, Hao
AU - Chen, Qingguo
AU - Luo, Weihua
AU - Dong, Wei
AU - Yan, Qingsen
AU - Zhang, Haokui
AU - Shen, Chunhua
N1 - Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - Currently, inspired by the success of vision-language models (VLMs), an increasing number of researchers are focusing on improving VLMs and have achieved promising results. However, most existing methods concentrate on optimizing the connector and enhancing the language model component, while neglecting improvements to the vision encoder itself. In contrast, we propose Text Guided LLaVA (TG-LLaVA) in this paper, which optimizes VLMs by guiding the vision encoder with text, offering a new and orthogonal optimization direction. Specifically, inspired by the purpose-driven logic inherent in human behavior, we use learnable latent embeddings as a bridge to analyze textual instruction and add the analysis results to the vision encoder as guidance, refining it. Subsequently, another set of latent embeddings extracts additional detailed text-guided information from high-resolution local patches as auxiliary information. Finally, with the guidance of text, the vision encoder can extract text-related features, similar to how humans focus on the most relevant parts of an image when considering a question. This results in generating better answers. Experiments on various datasets validate the effectiveness of the proposed method. Remarkably, without the need for additional training data, our proposed method can bring more benefits to the baseline (LLaVA-1.5) compared with other concurrent methods. Furthermore, the proposed method consistently brings improvement in different settings.
AB - Currently, inspired by the success of vision-language models (VLMs), an increasing number of researchers are focusing on improving VLMs and have achieved promising results. However, most existing methods concentrate on optimizing the connector and enhancing the language model component, while neglecting improvements to the vision encoder itself. In contrast, we propose Text Guided LLaVA (TG-LLaVA) in this paper, which optimizes VLMs by guiding the vision encoder with text, offering a new and orthogonal optimization direction. Specifically, inspired by the purpose-driven logic inherent in human behavior, we use learnable latent embeddings as a bridge to analyze textual instruction and add the analysis results to the vision encoder as guidance, refining it. Subsequently, another set of latent embeddings extracts additional detailed text-guided information from high-resolution local patches as auxiliary information. Finally, with the guidance of text, the vision encoder can extract text-related features, similar to how humans focus on the most relevant parts of an image when considering a question. This results in generating better answers. Experiments on various datasets validate the effectiveness of the proposed method. Remarkably, without the need for additional training data, our proposed method can bring more benefits to the baseline (LLaVA-1.5) compared with other concurrent methods. Furthermore, the proposed method consistently brings improvement in different settings.
UR - http://www.scopus.com/inward/record.url?scp=105003911845&partnerID=8YFLogxK
U2 - 10.1609/aaai.v39i9.32982
DO - 10.1609/aaai.v39i9.32982
M3 - 会议文章
AN - SCOPUS:105003911845
SN - 2159-5399
VL - 39
SP - 9076
EP - 9084
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 9
Y2 - 25 February 2025 through 4 March 2025
ER -