TAVGBench: Benchmarking Text to Audible-Video Generation

Yuxin Mao, Xuyang Shen, Jing Zhang, Zhen Qin, Jinxing Zhou, Mochu Xiang, Yiran Zhong, Yuchao Dai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

The Text to Audible-Video Generation (TAVG) task involves generating videos with accompanying audio based on text descriptions. Achieving this requires skillful alignment of both audio and video elements. To support research in this field, we have developed a comprehensive Text to Audible-Video Generation Benchmark (TAVGBench), which contains over 1.7 million clips with a total duration of 11.8 thousand hours. We propose an automatic annotation pipeline to ensure each audible video has detailed descriptions for both its audio and video contents. We also introduce the Audio-Visual Harmoni score (AVHScore) to provide a quantitative measure of the alignment between the generated audio and video modalities. Additionally, we present a baseline model for TAVG called TAVDiffusion, which uses a two-stream latent diffusion model to provide a fundamental starting point for further research in this area. We achieve the alignment of audio and video by employing cross-attention and contrastive learning. Through extensive experiments and evaluations on TAVGBench, we demonstrate the effectiveness of our proposed model under both conventional metrics and our proposed metrics. The dataset and code can be found on this page https://npucvr.github.io/TAVGBench/ and on github https://github.com/OpenNLPLab/TAVGBench.

Original languageEnglish
Title of host publicationMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages6607-6616
Number of pages10
ISBN (Electronic)9798400706868
DOIs
StatePublished - 28 Oct 2024
Event32nd ACM International Conference on Multimedia, MM 2024 - Melbourne, Australia
Duration: 28 Oct 20241 Nov 2024

Publication series

NameMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia

Conference

Conference32nd ACM International Conference on Multimedia, MM 2024
Country/TerritoryAustralia
CityMelbourne
Period28/10/241/11/24

Keywords

  • text to audible-video diffusion (tavdiffusion)
  • text to audible-video generation benchmark (tavgbench)

Fingerprint

Dive into the research topics of 'TAVGBench: Benchmarking Text to Audible-Video Generation'. Together they form a unique fingerprint.

Cite this