TY - JOUR
T1 - Sum/Difference Pattern Synthesis with Dynamic Range Ratio Control for Arbitrary Arrays
AU - Fan, Xuhui
AU - Liang, Junli
AU - Jing, Yang
AU - So, H. C.
AU - Geng, Qiang
AU - Zhao, Xiaozhe
N1 - Publisher Copyright:
© 1963-2012 IEEE.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - This article proposes a method which generates a set of weights to synthesize sum or difference pattern with precisely controlled sidelobe level (SLL), null, and dynamic range ratio (DRR) for arbitrary arrays. Our pattern synthesis approach reduces mutual coupling (MC) between the neighboring elements and complexity of the feeding network design. However, the formulated optimization problem is nonconvex due to the nonconvex objective function and fractional DRR constraint. To tackle it, we first introduce two sets of auxiliary variables: one for DRR constraint and the other for sidelobe and null constraints. By doing so, we then decompose the original optimization problem into three sets of subproblems characterized by the auxiliary variables and weight variables. To facilitate the subproblem with weight variables reaching its optimum values, we derive an appropriate range of step size. Finally, we iteratively solve these subproblems to obtain the solution to the original problem. Extensive experiments employing non-equispaced linear and rectangular arrays, concentric ring array, and cylinder array, are implemented to demonstrate that the developed approach can accurately control SLLs, null and DRR for arbitrary arrays.
AB - This article proposes a method which generates a set of weights to synthesize sum or difference pattern with precisely controlled sidelobe level (SLL), null, and dynamic range ratio (DRR) for arbitrary arrays. Our pattern synthesis approach reduces mutual coupling (MC) between the neighboring elements and complexity of the feeding network design. However, the formulated optimization problem is nonconvex due to the nonconvex objective function and fractional DRR constraint. To tackle it, we first introduce two sets of auxiliary variables: one for DRR constraint and the other for sidelobe and null constraints. By doing so, we then decompose the original optimization problem into three sets of subproblems characterized by the auxiliary variables and weight variables. To facilitate the subproblem with weight variables reaching its optimum values, we derive an appropriate range of step size. Finally, we iteratively solve these subproblems to obtain the solution to the original problem. Extensive experiments employing non-equispaced linear and rectangular arrays, concentric ring array, and cylinder array, are implemented to demonstrate that the developed approach can accurately control SLLs, null and DRR for arbitrary arrays.
KW - Arbitrary antenna array
KW - difference pattern
KW - dynamic range ratio (DRR)
KW - nonconvex optimization
KW - null
KW - sum pattern
UR - http://www.scopus.com/inward/record.url?scp=85117745119&partnerID=8YFLogxK
U2 - 10.1109/TAP.2021.3119107
DO - 10.1109/TAP.2021.3119107
M3 - 文章
AN - SCOPUS:85117745119
SN - 0018-926X
VL - 70
SP - 1940
EP - 1953
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
IS - 3
ER -