TY - GEN
T1 - Study on the optimization design of a civil turbofan engine
AU - Cao, Mingdong
AU - Wang, Zhanxue
AU - Liu, Zengwen
AU - Zhang, Xiaobo
N1 - Publisher Copyright:
© 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2014
Y1 - 2014
N2 - This work presents an optimization design process for a high bypass unmixed turbofan engine. The optimization design process contains a constraint analysis model, a mission analysis model, an engine cycle parameter optimization model, an engine performance model and an emission prediction model. The constraint analysis model is provided to establish the relationship between thrust to weight ratio and wing loading at takeoff. The mission analysis model is adopted to calculate the aircraft takeoff weight, the maximum thrust at takeoff and the required thrust in cruise. The engine cycle parameter optimization model is based on the self-adaptive three times variation differential evolution (STTVDE) which is developed from the differential evolution algorithm to find the engine cycle parameters minimizing the specific fuel consumption in cruise. The high compressor exit temperature limit, combustor exit temperature limit, engnine size, engnine weight and turbine expansion ratio as well as required thrust in cruise and takeoff which calculated from the constraint analysis and the mission analysis are used as constraint parameters in the engine cycle parameter optimization model. The emission prediction model is used to calculate the landing takeoff (LTO) emission cycle for NOx, CO and UHC based on Boeing fuel flow methodology and T3-P3 methodology. The engine performance model and the mission analysis model are employed to calculate the fuel consumption in the flight mission when engine cycle parameters are determined. Finally, five optimization cases are to be optimized, and their fuel consumptions are compared with each other in the mission analysis model.
AB - This work presents an optimization design process for a high bypass unmixed turbofan engine. The optimization design process contains a constraint analysis model, a mission analysis model, an engine cycle parameter optimization model, an engine performance model and an emission prediction model. The constraint analysis model is provided to establish the relationship between thrust to weight ratio and wing loading at takeoff. The mission analysis model is adopted to calculate the aircraft takeoff weight, the maximum thrust at takeoff and the required thrust in cruise. The engine cycle parameter optimization model is based on the self-adaptive three times variation differential evolution (STTVDE) which is developed from the differential evolution algorithm to find the engine cycle parameters minimizing the specific fuel consumption in cruise. The high compressor exit temperature limit, combustor exit temperature limit, engnine size, engnine weight and turbine expansion ratio as well as required thrust in cruise and takeoff which calculated from the constraint analysis and the mission analysis are used as constraint parameters in the engine cycle parameter optimization model. The emission prediction model is used to calculate the landing takeoff (LTO) emission cycle for NOx, CO and UHC based on Boeing fuel flow methodology and T3-P3 methodology. The engine performance model and the mission analysis model are employed to calculate the fuel consumption in the flight mission when engine cycle parameters are determined. Finally, five optimization cases are to be optimized, and their fuel consumptions are compared with each other in the mission analysis model.
UR - http://www.scopus.com/inward/record.url?scp=84913557900&partnerID=8YFLogxK
U2 - 10.2514/6.2014-3574
DO - 10.2514/6.2014-3574
M3 - 会议稿件
AN - SCOPUS:84913557900
T3 - 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014
BT - 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014
PB - American Institute of Aeronautics and Astronautics Inc.
T2 - 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and exhibit 2014
Y2 - 28 July 2014 through 30 July 2014
ER -