TY - JOUR
T1 - Structural, electronic, and optical properties of 9-heterofluorenes
T2 - A quantum chemical study
AU - Chen, Run Feng
AU - Zheng, Chao
AU - Fan, Q. U.L.I.
AU - Huang, Wei
PY - 2007/10
Y1 - 2007/10
N2 - Density-functional theory studies were applied to investigate the structural, electronic, and optical properties of 9-heterofluorenes achieved by substituting the carbon at 9 position of fluorene with silicon, germanium, nitrogen, phosphor, oxygen, sulfur, selenium, or boron. These heterofluorenes and their oligomers up to pentamers are highly aromatic and electrooptically active. The alkyl and aryl substituents of the heteroatom have limited influence, but the oxidation of the atom has significant influence on their molecular structures and properties. The highest occupied molecular orbital (HOMO)-lowest occupied molecular orbital (LUMO) interaction theory was successfully applied to analyze the energy levels and the frontier wave functions of these heterofluorenes. Most heterofluorenes belong to type B of interaction with low-lying LUMO and have the second kind of wave function. Carbazole and selenafluorene have type C of interaction with high-lying HOMO and the third kind of wave function. Types C and D of heterofluorenes, such as carbazole, oxygafluorene, sulfurafluorene, and selenafluorene also have high triplet state energies. The extrapolated HOMO and LUMO for polyheterofluorenes indicate that polyselenonafluorene has the lowest LUMO; polycarbazole has the highest HOMO; polyselenafluorene has the highest bandgap (Eg); and polyborafluorene has the lowest Eg. Heterofluorenes and their oligomers and polymers are of great experimental interests, especially those having extraordinary properties revealed in this study.
AB - Density-functional theory studies were applied to investigate the structural, electronic, and optical properties of 9-heterofluorenes achieved by substituting the carbon at 9 position of fluorene with silicon, germanium, nitrogen, phosphor, oxygen, sulfur, selenium, or boron. These heterofluorenes and their oligomers up to pentamers are highly aromatic and electrooptically active. The alkyl and aryl substituents of the heteroatom have limited influence, but the oxidation of the atom has significant influence on their molecular structures and properties. The highest occupied molecular orbital (HOMO)-lowest occupied molecular orbital (LUMO) interaction theory was successfully applied to analyze the energy levels and the frontier wave functions of these heterofluorenes. Most heterofluorenes belong to type B of interaction with low-lying LUMO and have the second kind of wave function. Carbazole and selenafluorene have type C of interaction with high-lying HOMO and the third kind of wave function. Types C and D of heterofluorenes, such as carbazole, oxygafluorene, sulfurafluorene, and selenafluorene also have high triplet state energies. The extrapolated HOMO and LUMO for polyheterofluorenes indicate that polyselenonafluorene has the lowest LUMO; polycarbazole has the highest HOMO; polyselenafluorene has the highest bandgap (Eg); and polyborafluorene has the lowest Eg. Heterofluorenes and their oligomers and polymers are of great experimental interests, especially those having extraordinary properties revealed in this study.
KW - DFT
KW - Fluorene
KW - Heterofluorene
KW - HOMO-LUMO interaction
KW - Polyheterofluorene
UR - http://www.scopus.com/inward/record.url?scp=34547927179&partnerID=8YFLogxK
U2 - 10.1002/jcc.20591
DO - 10.1002/jcc.20591
M3 - 文章
C2 - 17450547
AN - SCOPUS:34547927179
SN - 0192-8651
VL - 28
SP - 2091
EP - 2101
JO - Journal of Computational Chemistry
JF - Journal of Computational Chemistry
IS - 13
ER -