TY - JOUR
T1 - Stochastic Hopf bifurcation and chaos of stochastic Bonhoeffer-van der Pol system via Chebyshev polynomial approximation
AU - Zhang, Ying
AU - Xu, Wei
AU - Fang, Tong
PY - 2007/7/15
Y1 - 2007/7/15
N2 - In this paper, we analyzed stochastic chaos and Hopf bifurcation of stochastic Bonhoeffer-van der Pol (SBVP for short) system with bounded random parameter of an arch-like probability density function. The modifier 'stochastic' here implies dependent on some random parameter. In order to study the dynamical behavior of the SBVP system, Chebyshev polynomial approximation is applied to transform the SBVP system into its equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. Thus, we can further explore the nonlinear phenomena in SBVP system. Stochastic chaos and Hopf bifurcation analyzed here are by and large similar to those in the deterministic mean-parameter Bonhoeffer-van der Pol system (DM-BVP for short) but there are also some featuring differences between them shown by numerical results. For example, in the SBVP system the parameter interval matching chaotic responses diffuses into a wider one, which further grows wider with increasing of intensity of the random variable. The shapes of limit cycles in the SBVP system are some different from that in the DM-BVP system, and the sizes of limit cycles become smaller with the increasing of intensity of the random variable. And some biological explanations are given.
AB - In this paper, we analyzed stochastic chaos and Hopf bifurcation of stochastic Bonhoeffer-van der Pol (SBVP for short) system with bounded random parameter of an arch-like probability density function. The modifier 'stochastic' here implies dependent on some random parameter. In order to study the dynamical behavior of the SBVP system, Chebyshev polynomial approximation is applied to transform the SBVP system into its equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. Thus, we can further explore the nonlinear phenomena in SBVP system. Stochastic chaos and Hopf bifurcation analyzed here are by and large similar to those in the deterministic mean-parameter Bonhoeffer-van der Pol system (DM-BVP for short) but there are also some featuring differences between them shown by numerical results. For example, in the SBVP system the parameter interval matching chaotic responses diffuses into a wider one, which further grows wider with increasing of intensity of the random variable. The shapes of limit cycles in the SBVP system are some different from that in the DM-BVP system, and the sizes of limit cycles become smaller with the increasing of intensity of the random variable. And some biological explanations are given.
KW - Chebyshev polynomial approximation
KW - Random parameter
KW - Stochastic Bonhoeffer-van der Pol system
KW - Stochastic chaos
KW - Stochastic Hopf bifurcation
UR - http://www.scopus.com/inward/record.url?scp=34250687103&partnerID=8YFLogxK
U2 - 10.1016/j.amc.2007.02.006
DO - 10.1016/j.amc.2007.02.006
M3 - 文章
AN - SCOPUS:34250687103
SN - 0096-3003
VL - 190
SP - 1225
EP - 1236
JO - Applied Mathematics and Computation
JF - Applied Mathematics and Computation
IS - 2
ER -