TY - GEN
T1 - Specificity-preserving RGB-D Saliency Detection
AU - Zhou, Tao
AU - Fu, Huazhu
AU - Chen, Geng
AU - Zhou, Yi
AU - Fan, Deng Ping
AU - Shao, Ling
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - RGB-D saliency detection has attracted increasing attention, due to its effectiveness and the fact that depth cues can now be conveniently captured. Existing works often focus on learning a shared representation through various fusion strategies, with few methods explicitly considering how to preserve modality-specific characteristics. In this paper, taking a new perspective, we propose a specificity-preserving network (SP-Net) for RGB-D saliency detection, which benefits saliency detection performance by exploring both the shared information and modality-specific properties (e.g., specificity). Specifically, two modality-specific networks and a shared learning network are adopted to generate individual and shared saliency maps. A cross-enhanced integration module (CIM) is proposed to fuse cross-modal features in the shared learning network, which are then propagated to the next layer for integrating cross-level information. Besides, we propose a multi-modal feature aggregation (MFA) module to integrate the modality-specific features from each individual decoder into the shared decoder, which can provide rich complementary multi-modal information to boost the saliency detection performance. Further, a skip connection is used to combine hierarchical features between the encoder and decoder layers. Experiments on six benchmark datasets demonstrate that our SP-Net outperforms other state-of-the-art methods. Code is available at: https://github.com/taozh2017/SPNet.
AB - RGB-D saliency detection has attracted increasing attention, due to its effectiveness and the fact that depth cues can now be conveniently captured. Existing works often focus on learning a shared representation through various fusion strategies, with few methods explicitly considering how to preserve modality-specific characteristics. In this paper, taking a new perspective, we propose a specificity-preserving network (SP-Net) for RGB-D saliency detection, which benefits saliency detection performance by exploring both the shared information and modality-specific properties (e.g., specificity). Specifically, two modality-specific networks and a shared learning network are adopted to generate individual and shared saliency maps. A cross-enhanced integration module (CIM) is proposed to fuse cross-modal features in the shared learning network, which are then propagated to the next layer for integrating cross-level information. Besides, we propose a multi-modal feature aggregation (MFA) module to integrate the modality-specific features from each individual decoder into the shared decoder, which can provide rich complementary multi-modal information to boost the saliency detection performance. Further, a skip connection is used to combine hierarchical features between the encoder and decoder layers. Experiments on six benchmark datasets demonstrate that our SP-Net outperforms other state-of-the-art methods. Code is available at: https://github.com/taozh2017/SPNet.
UR - http://www.scopus.com/inward/record.url?scp=85127819115&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00464
DO - 10.1109/ICCV48922.2021.00464
M3 - 会议稿件
AN - SCOPUS:85127819115
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 4661
EP - 4671
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -