TY - JOUR
T1 - Solidification of highly undercooled hypereutectic Ni-Ni3B alloy melt
AU - Liu, Feng
AU - Xu, Junfeng
AU - Zhang, Di
AU - Jian, Zengyun
PY - 2014/10
Y1 - 2014/10
N2 - The solidification of undercooled Ni-4.5 wt pct B alloy melt was investigated by using the glass fluxing technique. The alloy melt was undercooled up to ΔT p ∼ 245 K (245 °C), where a mixture of α-Ni dendrite, Ni3B dendrite, rod eutectic, and precipitates was obtained. If ΔT p < 175 K ± 10 K (175 °C ± 10 °C), the solidification pathway was found as primary transformation and eutectic transformation (L → Ni3B and L → Ni/Ni3B); if ΔT p ≤ 175 K ± 10 K (175 °C ± 10 °C), the pathway was found as metastable eutectic transformation, metastable phase decomposition, and residual liquid solidification (L → Ni/Ni23B6, Ni23B 6 → Ni/Ni3B, and Lr → Ni/Ni 3B). A high-speed video system was adopted to observe the solidification front of each transformation. It showed that for residual liquid solidification, the solidification front velocity is the same magnitude as that for eutectic transformation, but is an order of magnitude larger than for metastable eutectic transformation, which confirms the reaction as Lr → Ni/Ni3B; it also showed that this velocity decreases with increasing ΔT r, which can be explained by reduction of the residual liquid fraction and decrease of Ni23B6 decomposition rate.
AB - The solidification of undercooled Ni-4.5 wt pct B alloy melt was investigated by using the glass fluxing technique. The alloy melt was undercooled up to ΔT p ∼ 245 K (245 °C), where a mixture of α-Ni dendrite, Ni3B dendrite, rod eutectic, and precipitates was obtained. If ΔT p < 175 K ± 10 K (175 °C ± 10 °C), the solidification pathway was found as primary transformation and eutectic transformation (L → Ni3B and L → Ni/Ni3B); if ΔT p ≤ 175 K ± 10 K (175 °C ± 10 °C), the pathway was found as metastable eutectic transformation, metastable phase decomposition, and residual liquid solidification (L → Ni/Ni23B6, Ni23B 6 → Ni/Ni3B, and Lr → Ni/Ni 3B). A high-speed video system was adopted to observe the solidification front of each transformation. It showed that for residual liquid solidification, the solidification front velocity is the same magnitude as that for eutectic transformation, but is an order of magnitude larger than for metastable eutectic transformation, which confirms the reaction as Lr → Ni/Ni3B; it also showed that this velocity decreases with increasing ΔT r, which can be explained by reduction of the residual liquid fraction and decrease of Ni23B6 decomposition rate.
UR - http://www.scopus.com/inward/record.url?scp=84906781678&partnerID=8YFLogxK
U2 - 10.1007/s11661-014-2460-5
DO - 10.1007/s11661-014-2460-5
M3 - 文章
AN - SCOPUS:84906781678
SN - 1073-5623
VL - 45
SP - 4810
EP - 4819
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
IS - 11
ER -