Sensing-Efficient Transmit Beamforming for ISAC with MIMO Radar and MU-MIMO Communication

Huimin Liu, Yong Li, Wei Cheng, Limeng Dong, Beiming Yan

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We focus on an integrated sensing and communication (ISAC) system—a single platform equipped with multiple antennas transmitting a waveform to detect targets and communicate with downlink users. Due to spectrum sharing between multiple-input–multiple-output (MIMO) radar and multiuser MIMO (MU-MIMO) communication, beamforming is becoming increasingly important as a technique that enables the creation of directional beams. In this paper, we propose a novel joint transmit beamforming design scheme that employs a beam pattern approximation strategy for radar sensing and utilizes rate-splitting for multiuser communication offering advanced interference management strategies. The optimization problems are formulated from both radar-centric and trade-off viewpoints. First, we propose a radar-centric beamforming scheme to achieve sensing efficiency through beam pattern approximation, while requiring the fairness signal-to-interference-plus-noise ratio (SINR) to be higher than a given threshold to guarantee a minimal level of communication quality, while the obtained performance for the communication system is limited in this scheme. To address this problem, we propose a beamforming design scheme from a trade-off viewpoint that flexibly optimizes both sensing and communication performances with a regularization parameter. Finally, we propose a partial rate-splitting-based beamforming design method aimed at maximizing the effective sensing power, with the constraint of a minimal sum rate for downlink users. Numerical results are provided to assess the effectiveness of all proposed schemes.

Original languageEnglish
Article number3028
JournalRemote Sensing
Volume16
Issue number16
DOIs
StatePublished - Aug 2024

Keywords

  • integrated sensing and communication (ISAC)
  • joint transmit beamforming
  • MIMO radar
  • MU-MIMO

Fingerprint

Dive into the research topics of 'Sensing-Efficient Transmit Beamforming for ISAC with MIMO Radar and MU-MIMO Communication'. Together they form a unique fingerprint.

Cite this