scPML: pathway-based multi-view learning for cell type annotation from single-cell RNA-seq data

Zhi Hua Du, Wei Lin Hu, Jian Qiang Li, Xuequn Shang, Zhu Hong You, Zhuang zhuang Chen, Yu An Huang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Recent developments in single-cell technology have enabled the exploration of cellular heterogeneity at an unprecedented level, providing invaluable insights into various fields, including medicine and disease research. Cell type annotation is an essential step in its omics research. The mainstream approach is to utilize well-annotated single-cell data to supervised learning for cell type annotation of new singlecell data. However, existing methods lack good generalization and robustness in cell annotation tasks, partially due to difficulties in dealing with technical differences between datasets, as well as not considering the heterogeneous associations of genes in regulatory mechanism levels. Here, we propose the scPML model, which utilizes various gene signaling pathway data to partition the genetic features of cells, thus characterizing different interaction maps between cells. Extensive experiments demonstrate that scPML performs better in cell type annotation and detection of unknown cell types from different species, platforms, and tissues.

Original languageEnglish
Article number1268
JournalCommunications Biology
Volume6
Issue number1
DOIs
StatePublished - Dec 2023

Fingerprint

Dive into the research topics of 'scPML: pathway-based multi-view learning for cell type annotation from single-cell RNA-seq data'. Together they form a unique fingerprint.

Cite this