Robust stall flutter suppression using H2/H control

Sohrab Haghighat, Zhiwei Sun, Hugh H.T. Liu, Junqiang Bai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Following the current trend in aeroelastic optimization, as wing structures have been made more flexible, active control systems such as flutter suppression systems have been widely adopted to reduce undesirable aeroelastic behaviors. The stability and the performance of flutter suppression control systems can be negatively affected as the inflow speed deviates from the nominal design value. In this work, a mixed-norm robust controller is designed to perform stall flutter suppression. A 2-dimensional nonlinear time-domain aeroservoelastic model is developed. The nonlinear equations are linearized at different flight conditions and are employed to construct an uncertainty model, which affects the nominal dynamics in an affine way. The obtained uncertain model of the aeroservoelastic system is used to design a mixed-norm H2/H controller. The performance of the designed controller is compared with the performance of a non-robust H2 controller at different flight conditions. The proposed control architecture reduces the adverse effect of inflow speed variation on the performance of the closed-loop system.

Original languageEnglish
Title of host publicationActive Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791846186
DOIs
StatePublished - 2014
EventASME 2014 Dynamic Systems and Control Conference, DSCC 2014 - San Antonio, United States
Duration: 22 Oct 201424 Oct 2014

Publication series

NameASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Volume1

Conference

ConferenceASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Country/TerritoryUnited States
CitySan Antonio
Period22/10/1424/10/14

Fingerprint

Dive into the research topics of 'Robust stall flutter suppression using H2/H control'. Together they form a unique fingerprint.

Cite this