Robust and accurate prediction of protein–protein interactions by exploiting evolutionary information

Yang Li, Zheng Wang, Li Ping Li, Zhu Hong You, Wen Zhun Huang, Xin Ke Zhan, Yan Bin Wang

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Various biochemical functions of organisms are performed by protein–protein interactions (PPIs). Therefore, recognition of protein–protein interactions is very important for understanding most life activities, such as DNA replication and transcription, protein synthesis and secretion, signal transduction and metabolism. Although high-throughput technology makes it possible to generate large-scale PPIs data, it requires expensive cost of both time and labor, and leave a risk of high false positive rate. In order to formulate a more ingenious solution, biology community is looking for computational methods to quickly and efficiently discover massive protein interaction data. In this paper, we propose a computational method for predicting PPIs based on a fresh idea of combining orthogonal locality preserving projections (OLPP) and rotation forest (RoF) models, using protein sequence information. Specifically, the protein sequence is first converted into position-specific scoring matrices (PSSMs) containing protein evolutionary information by using the Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then we characterize a protein as a fixed length feature vector by applying OLPP to PSSMs. Finally, we train an RoF classifier for the purpose of identifying non-interacting and interacting protein pairs. The proposed method yielded a significantly better results than existing methods, with 90.07% and 96.09% prediction accuracy on Yeast and Human datasets. Our experiment show the proposed method can serve as a useful tool to accelerate the process of solving key problems in proteomics.

Original languageEnglish
Article number16910
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Robust and accurate prediction of protein–protein interactions by exploiting evolutionary information'. Together they form a unique fingerprint.

Cite this