Abstract
The millimeter wave self-backhaul network (mW-SBN) is one of the key solutions in 5G small cell backhaul. However, a lot of new challenges will be faced when the routing protocol of mW-SBN is designed, due to the dynamic traffic requirement and the directional transmission. To solve the problem well, the remaining bandwidth is described in the paper firstly, which plays a key role in the process of the path discovery. Secondly, a remaining bandwidth based multi-path routing (RBMR) protocol is proposed for the mW-SBN, which is mainly composed of the interaction of the remaining bandwidth information between adjacent nodes, the source route discovery that meets the data backhaul bandwidth requirements and the effective maintenance of the routing table. Thirdly, the upper limit of the number of multi-path is analyzed indirectly. Finally, the proposed protocol is simulated and compared. The simulation results show that RBMR protocol has greater gain than the three variations, i.e. remaining bandwidth based single-path routing (RBSR), non-remaining bandwidth based multi-path routing (NBMR) and non-remaining bandwidth based single-path routing (NBSR), in terms of network average throughput, routing overhead and packet loss rate.
Original language | English |
---|---|
Pages (from-to) | 3839-3855 |
Number of pages | 17 |
Journal | Wireless Networks |
Volume | 25 |
Issue number | 7 |
DOIs | |
State | Published - 1 Oct 2019 |
Keywords
- 5G
- Millimeter wave
- Multi-path routing
- Remaining bandwidth
- Self-backhaul