TY - JOUR
T1 - Rational Design of a Flexible CNTs@PDMS Film Patterned by Bio-Inspired Templates as a Strain Sensor and Supercapacitor
AU - Zhang, Chenjun
AU - Li, Hui
AU - Huang, Aoming
AU - Zhang, Qiao
AU - Rui, Kun
AU - Lin, Huijuan
AU - Sun, Gengzhi
AU - Zhu, Jixin
AU - Peng, Huisheng
AU - Huang, Wei
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/5/3
Y1 - 2019/5/3
N2 - Flexible devices integrated with sensing and energy storage functions are highly desirable due to their potential application in wearable electronics and human motion detection. Here, a flexible film is designed in a facile and low-cost leaf templating process, comprising wrinkled carbon nanotubes (CNTs) as the conductive layer and patterned polydimethylsiloxane (PDMS) with bio-inspired microstructure as a soft substrate. Assembled from wrinkled CNTs on patterned PDMS film, a strain sensor is realized to possess sensitive resistance response against various deformations, producing a resistance response of 0.34%, 0.14%, and 9.1% under bending, pressing, and 20% strain, respectively. Besides, the strain sensor can reach a resistance response of 3.01 when stretched to 44%. Furthermore, through the electro-deposition of polyaniline, the CNTs film is developed into a supercapacitor, which exhibits a specific capacitance of 176 F g −1 at 1 A g −1 and a capacitance retention of 88% after 10 000 cycles. In addition, the fabricated supercapacitor shows super flexibility, delivering a capacitance retention of 98% after 180° bending for 100 cycles, 95% after 45° twisting for 100 cycles, and 98% after 100% stretching for 400 cycles. The superior capacitance stability demonstrates that the design of wrinkled CNTs-based electrodes fixed by microstructures is beneficial to the excellent electrochemical performance.
AB - Flexible devices integrated with sensing and energy storage functions are highly desirable due to their potential application in wearable electronics and human motion detection. Here, a flexible film is designed in a facile and low-cost leaf templating process, comprising wrinkled carbon nanotubes (CNTs) as the conductive layer and patterned polydimethylsiloxane (PDMS) with bio-inspired microstructure as a soft substrate. Assembled from wrinkled CNTs on patterned PDMS film, a strain sensor is realized to possess sensitive resistance response against various deformations, producing a resistance response of 0.34%, 0.14%, and 9.1% under bending, pressing, and 20% strain, respectively. Besides, the strain sensor can reach a resistance response of 3.01 when stretched to 44%. Furthermore, through the electro-deposition of polyaniline, the CNTs film is developed into a supercapacitor, which exhibits a specific capacitance of 176 F g −1 at 1 A g −1 and a capacitance retention of 88% after 10 000 cycles. In addition, the fabricated supercapacitor shows super flexibility, delivering a capacitance retention of 98% after 180° bending for 100 cycles, 95% after 45° twisting for 100 cycles, and 98% after 100% stretching for 400 cycles. The superior capacitance stability demonstrates that the design of wrinkled CNTs-based electrodes fixed by microstructures is beneficial to the excellent electrochemical performance.
KW - bio-inspired templates
KW - flexible supercapacitors
KW - microstructures
KW - strain sensors
UR - http://www.scopus.com/inward/record.url?scp=85063931369&partnerID=8YFLogxK
U2 - 10.1002/smll.201805493
DO - 10.1002/smll.201805493
M3 - 文章
C2 - 30945787
AN - SCOPUS:85063931369
SN - 1613-6810
VL - 15
JO - Small
JF - Small
IS - 18
M1 - 1805493
ER -