Rate Controllable Learned Image Compression Based on RFL Model

Saiping Zhang, Luge Wang, Xionghui Mao, Fuzheng Yang, Shuai Wan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In this paper, we propose a rate controllable image compression framework, Rate Controllable Variational Autoencoder (RC-VAE), based on the Rate-Feature-Level (RFL) model established through our exploration on the correlation among target rates, image features and quantization levels. Considering that, when meeting the same target rate, different images should be quantized in different levels, we focus on jointly utilizing the target rate and the extracted features of the image to predict the corresponding quantization level and propose the RFL model. Combining the proposed RFL model with a Hyperprior Continuously Variable Rate (HCVR) image compression network, we further propose the RC-VAE. By controlling information loss in quantization process, the RC-VAE can work at the target rate. Experimental results have demonstrated that one single RC-VAE model can adapt to multiple target rates with higher rate control accuracy and better R-D performance compared with the state-of-the-art rate controllable Image compression networks.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Visual Communications and Image Processing, VCIP 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665475921
DOIs
StatePublished - 2022
Event2022 IEEE International Conference on Visual Communications and Image Processing, VCIP 2022 - Suzhou, China
Duration: 13 Dec 202216 Dec 2022

Publication series

Name2022 IEEE International Conference on Visual Communications and Image Processing, VCIP 2022

Conference

Conference2022 IEEE International Conference on Visual Communications and Image Processing, VCIP 2022
Country/TerritoryChina
CitySuzhou
Period13/12/2216/12/22

Keywords

  • Deep image compression
  • rate control
  • rate-distortion
  • variational autoencoder

Fingerprint

Dive into the research topics of 'Rate Controllable Learned Image Compression Based on RFL Model'. Together they form a unique fingerprint.

Cite this