Rapid Eddy Current Braking of Space Tumbling Target Based on Model Predictive Control

Xiyao Liu, Panfeng Huang, Bingxiao Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Due to the increasing risk of space tumbling targets for spacecraft and astronauts, de-tumbling technology of spacecraft become more and more important and various de-tumbling methods have been proposed. This paper mainly studies the fast and safe de-tumbling of space tumbling target. Considering that the required time of de-tumbling via previous methods is too long, this paper first takes the maximum de-tumbling torque as the objective function and solves the optimal trajectory in real time. Then, the MPC algorithm is used to track the trajectory under the constraints of the safe area to ensure a fast and safe de-tumbling. The numerical simulation of large failure satellite verify that the method proposed in this paper is very effective on reducing de-tumbling time. However, it consumes huge control power. The controller will continue to be optimized in the future to reduce the consumption of control power while ensuring rapid de-tumbling.

Original languageEnglish
Title of host publicationAdvances in Guidance, Navigation and Control - Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020
EditorsLiang Yan, Haibin Duan, Xiang Yu
PublisherSpringer Science and Business Media Deutschland GmbH
Pages3007-3017
Number of pages11
ISBN (Print)9789811581540
DOIs
StatePublished - 2022
EventInternational Conference on Guidance, Navigation and Control, ICGNC 2020 - Tianjin, China
Duration: 23 Oct 202025 Oct 2020

Publication series

NameLecture Notes in Electrical Engineering
Volume644 LNEE
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

ConferenceInternational Conference on Guidance, Navigation and Control, ICGNC 2020
Country/TerritoryChina
CityTianjin
Period23/10/2025/10/20

Keywords

  • Eddy current brake
  • Model predictive control
  • Space tumbling target

Fingerprint

Dive into the research topics of 'Rapid Eddy Current Braking of Space Tumbling Target Based on Model Predictive Control'. Together they form a unique fingerprint.

Cite this