TY - JOUR
T1 - Radial breathing modes coupling in plasmonic molecules
AU - Xiao, Fajun
AU - Wang, Guanglin
AU - Shang, Wuyun
AU - Zhu, Weiren
AU - Han, Lei
AU - Mei, Ting
AU - Premaratne, Malin
AU - Zhao, Jianlin
N1 - Publisher Copyright:
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
PY - 2019
Y1 - 2019
N2 - Metallic hexamer, very much the plasmonic analog of benzene molecule, provides an ideal platform to mimic modes coupling and hybridization in molecular systems. To demonstrate this, we present a detailed study on radial breathing mode (RBM) coupling in a plasmonic dual-hexamers. We excite RBMs of hexamers by symmetrically matching the polarization state of the illumination with the distribution of electric dipole moments of the dual-hexamer. It is found that the RBM coupling exhibits a nonexponential decay when the inter-hexamer separation is increased, owing to the dark mode nature of RBM. When the outer hexamer is subjected to the in-plane twisting, resonant wavelengths of two coupled RBMs as well as the coupling constant show cosine variations with the twist angle, indicating the symmetry of hexamer structure plays a critical role in the coupling of RBMs. Moreover, it is demonstrated that the coupling of RBMs is dominated by the in-plane interaction as the outer hexamer is under an out-of-plane tilting, causing convergence of resonant wavelengths of the two coupled RBMs with increasing tilt angle. Our results not only provide an insight into the plasmonic RBM coupling mechanism, but also pave the way to systematically control the spectral response of plasmonic molecules.
AB - Metallic hexamer, very much the plasmonic analog of benzene molecule, provides an ideal platform to mimic modes coupling and hybridization in molecular systems. To demonstrate this, we present a detailed study on radial breathing mode (RBM) coupling in a plasmonic dual-hexamers. We excite RBMs of hexamers by symmetrically matching the polarization state of the illumination with the distribution of electric dipole moments of the dual-hexamer. It is found that the RBM coupling exhibits a nonexponential decay when the inter-hexamer separation is increased, owing to the dark mode nature of RBM. When the outer hexamer is subjected to the in-plane twisting, resonant wavelengths of two coupled RBMs as well as the coupling constant show cosine variations with the twist angle, indicating the symmetry of hexamer structure plays a critical role in the coupling of RBMs. Moreover, it is demonstrated that the coupling of RBMs is dominated by the in-plane interaction as the outer hexamer is under an out-of-plane tilting, causing convergence of resonant wavelengths of the two coupled RBMs with increasing tilt angle. Our results not only provide an insight into the plasmonic RBM coupling mechanism, but also pave the way to systematically control the spectral response of plasmonic molecules.
UR - http://www.scopus.com/inward/record.url?scp=85062810865&partnerID=8YFLogxK
U2 - 10.1364/OE.27.005116
DO - 10.1364/OE.27.005116
M3 - 文章
C2 - 30876114
AN - SCOPUS:85062810865
SN - 1094-4087
VL - 27
SP - 5116
EP - 5124
JO - Optics Express
JF - Optics Express
IS - 4
ER -